
9

UNDERSTANDING TECHNICAL DEBT IN COMPLEX SYSTEM

DEVELOPMENT PROJECTS: A VISUALIZATION MODEL

A THESIS SUBMITTED TO

THE GRADUATE SCHOOL OF INFORMATICS OF

THE MIDDLE EAST TECHNICAL UNIVERSITY

BY

MURAT CAN GÜLER

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE

DEGREE OF MASTER OF SCIENCE

IN

THE DEPARTMENT OF INFORMATION SYSTEMS

JANUARY 2023

10

11

Approval of the thesis:

UNDERSTANDING TECHNICAL DEBT IN COMPLEX SYSTEM

DEVELOPMENT PROJECTS: A VISUALIZATION MODEL

submitted by Murat Can GÜLER in partial fulfillment of the requirements for the

degree of Master of Science in Information Systems, Middle East Technical

University by,

Prof. Dr. Banu GÜNEL KILIÇ

Dean, Graduate School of Informatics ___________________

Prof. Dr. Altan KOÇYĠĞĠT

Head of the Department, Information Systems ___________________

Asst. Prof. Dr. Özden Özcan TOP

Supervisor, Information Systems, METU ___________________

Examining Committee Members:

Prof. Dr. Banu GÜNEL KILIÇ

Information Systems Dept., METU _____________________

Asst. Prof. Dr. Özden Özcan TOP

Information Systems Dept., METU _____________________

Assoc. Prof. Dr. Ebru GÖKALP

Computer Engineering Dept., Hacettepe University _____________________

 24.01.2023

12

iii

I hereby declare that all information in this document has been obtained and

presented in accordance with academic rules and ethical conduct. I also declare

that, as required by these rules and conduct, I have fully cited and referenced

all material and results that are not original to this work.

Name, Last Name: Murat Can, GÜLER

 Signature: ________________________

iv

ABSTRACT

Understanding Technical Debt in Complex System Development Projects:

A Visualization Model

Murat Can GÜLER,

Master of Science, Department of Information Systems,

Supervisor: Asst. Prof. Dr. Özden ÖZCAN TOP

January 2023, 121 pages

A complex system combines multiple articles with specific requirements and

essential functions, communicating with each other and the environment.

Development stages of complex systems intertwine with each other due to high-level

interactions and dependencies among different components of systems. Due to these

factors, developing complex systems usually requires unique approaches to solving

managerial and technical problems and adopting new technologies. In a complex

systems development project, required budget can exponentially grow with the

complexity level of a product and inappropriate/bad decisions can be made to deal

with tight delivery schedules. Due to the complexity of the specifications, a

compulsory module of the system often requires mass production on the hardware

level. System engineers sometimes need to foresee all system requirements, even

without a rapid prototype. Even a minor change in the system requirements may

affect hardware design, developed software modules, and test cases. Mass production

decisions could be made during the development stages. These issues may cause

significant expenses in total product lifecycle or postponing delivery schedules. The

high complexity of developing large systems makes the technical debt concept even

more critical. This thesis aims to reveal the factors and decisions that cause technical

debt in complex systems development (CSD). For this purpose, existing categories in

the literature were determined. The thesis seeks to answer how sufficiently the

available categories determine technical debt in complex system development

projects. A qualitative research was performed on eight cases to identify the answers

to this question. Afterwards, a model was created to visualize TD in complex system

development projects (TDVM) XXX. . With the guidance of the TDVM model, new

categories were proposed in the literature. These new categories were evaluated by

experts in the field and subjected to qualitative analysis. As a result of the analysis of

the cases on the model, six improvements regarding technical debt management in

complex system projects were shared. In addition to the software developers, the

impact of technical debt on other project stakeholders has been revealed.

v

Keywords: Technical Debt, Complex System Development, Technical Debt

Visualization Model

vi

ÖZ

KOMPLEKS SĠSTEM GELĠġTĠRME PROJELERĠNDE TEKNĠK BORCU

ANLAMAK: GÖRSELLEġTĠRME MODELĠ

Murat Can GÜLER,

Yüksek Lisans Tezi, BiliĢim Sistemleri,

Tez Yöneticisi: Asst. Prof. Özden ÖZCAN TOP

Ocak 2023, 121 sayfa

KarmaĢık bir sistem, birbiriyle ve çevreyle iletiĢim kuran, belirli gereksinimlere ve

temel iĢlevlere sahip çok sayıda ürünü ve alt sistemi birleĢtirir. KarmaĢık sistemlerin

geliĢtirme aĢamaları, sistemlerin farklı bileĢenleri arasındaki etkileĢimler ve

bağımlılıklar nedeniyle birbiriyle iç içe geçer. Bu faktörler nedeniyle, kompleks

sistemleri geliĢtirmek yönetimsel ve teknik sorunları çözmeyi ve yeni teknolojileri

benimserken inovatif yaklaĢımları gerektirir. Kompleks sistem geliĢtirme

projelerinde; gerekli bütçe, sistemin karmaĢıklığı ve teslimat takvimleriyle baĢa

çıkmak için alınan uygunsuz/hatalı kararlarla katlanarak artar. Takvim baskısı ve

tanımlı isterlerin karmaĢıklığından dolayı, sistemin kritik bileĢenleri dahi prototip

aĢamasındayken seri üretim paralelden baĢlatılabilir. Sistem mühendislerinin prototip

bir ürün olmasa dahi sistem gereksinimlerini öngörmeleri beklenir. Sistem

gereksinimlerindeki küçük bir değiĢiklik bile donanım tasarımını; geliĢtirilen yazılım

modüllerini ve test senaryolarını etkileyebilir. Ürün yaĢam döngüsünde bu hatalar;

milyonlarca dolarlık kayba, teslimat programlarının ertelenmesine neden olabilir.

Seri üretime yönelik kararlar bu tip kompleks sistemlerde, geliĢtirme aĢamalarında

alınmak zorunda kalınır. Bu tür kararlar genellikle teknik borç kapsamında ele

alınabilir. Teknik borç, sistemin hızlı teslim gereksinimi nedeniyle sistemin genel

kalitesini ve sürdürülebilirliğini etkileyen mühendislik kararlarıdır. Bu tür sistemleri

geliĢtirmenin karmaĢıklığı, teknik borç kavramını daha da kritik hale getirir. Bu tez,

karmaĢık sistem geliĢtirmede teknik borca neden olan faktörleri ve kararları ortaya

çıkarmayı ve görünür kılmayı amaçlamaktadır. Bu bulgulara yönelik kompleks

sistem geliĢtirme sürecinde teknik borcun üstesinden gelmek için görselleĢtirme

modeli geliĢtirilmiĢtir. Bu amaçla öncelikle literatürde var olan teknik borç

kategorileri belirlenmiĢtir. AraĢtırma sorularından ilki, Teknik borcun kompleks

projelerde belirlenmesine mevut kategorilerin katkısını inceledi. Sonuca ulaĢmak için

sekiz vaka üzerinde niteliksel analiz yapılmıĢtır. Seçilen vakaların karmaĢık yapıda

projelerden olduğu literatür rehberliğinde doğrulanmıĢtır. KarmaĢık sistem geliĢtirme

projelerinde TD'leri görselleĢtirmek için oluĢturulan model, ilgili vakalara uygulandı.

TDVM modelinin çıktıları analiz edilerek literature yeni kategoriler önerildi. Ayrıca

vii

bu yeni kategoriler, alanında uzman kiĢiler tarafından değerlendirilerek nitel analize

tabi tutulmuĢtur. Model üzerinde vakaların analizi sonucunda, karmaĢık sistem

projelerinde teknik borç kavramının yönetimine iliĢkin altı iyileĢtirme paylaĢılmıĢtır.

Yazılım geliĢtiricilere ek olarak, teknik borcun diğer proje paydaĢları üzerindeki

etkisi bu araĢtırmayla ortaya çıkarılmayı hedeflendi.

Anahtar Kelimeler: Teknik borç, KarmaĢık sistem geliĢtirme yöntemleri, Teknik

borç görselleĢtirme modeli

viii

DEDICATION

To My Beloved Family

ix

TABLE OF CONTENTS

ABSTRACT .. iv

ÖZ ... vi

DEDICATION .. viii

TABLE OF CONTENTS .. ix

LIST OF TABLES .. xi

LIST OF FIGURES ... xii

CHAPTERS

1. INTRODUCTION ... 1

1.1. Problem Statement .. 2

1.2. Research Questions ... 3

1.3. Research Strategy .. 4

1.4. Structure of the Thesis .. 5

2. BACKGROUND & LITERATURE REVIEW ... 7

2.1. Technical Debt .. 7

2.1.1. What is technical Debt ... 7

 2.1.1.1. Types of technical debt .. 10

 2.1.1.2. Causes of technical debt ... 22

 2.1.1.3. Effects of technical debt ... 24

2.1.2. What makes a project complex? .. 25

3. RESEARCH METHODOLOGY ... 27

3.1. Design science methodology .. 27

3.2. TD categorization in complex projects ... 28

4. VISUALIZATION ... 31

4.1. What is the technical debt visualization model? ... 31

4.2. Description of TDVM Components .. 32

4.2.1. TDVM Timeline... 33

4.2.2. TDVM Lanes ... 33

4.2.3. TDVM Environment .. 33

4.2.4. Symbols and notations used in TDVM .. 35

4.3. How to use the technical debt visualization model on your complex

projects? ... 38

5. IMPLEMENTATION .. 41

5.1. Multiple Case Study .. 41

5.2. Purpose of the case study .. 41

5.4. Case selection criteria ... 42

5.5. Case Conduct .. 43

5.6. Data Collection Protocol: .. 44

5.6.1. Interviews ... 45

5.6.2. Observation Forms ... 47

5.6.3. The Dedoose Tool .. 47

6. CASE ANALYSIS ... 49

x

6.1. Using TDVM to identify and monitor TD .. 49

6.1.1. Background .. 49

 6.1.1.1. Findings .. 50

6.1.2. Background of Project #2 ... 54

 6.1.2.1. Findings of Project #2 .. 56

6.1.3. Background of Project #3 ... 58

 6.1.3.1. Findings of Project #3 .. 59

6.1.4. Background of Project #4 ... 62

 6.1.4.1. Findings of Project #4 .. 63

6.1.5. Background of Project #5 ... 66

 6.1.5.1. Findings of Project #5 .. 67

6.1.6. Background of Project #6 ... 70

 6.1.6.1. Findings of Project #6 .. 70

6.1.7. Background of Project #7 ... 75

 6.1.7.1. Findings of Project #7 .. 76

6.1.8. Background of Project #8 ... 80

 6.1.8.1. Findings of Project #8 .. 81

6.2. Qualitative analysis of the cases using Dedoose ... 84

6.2.1. Findings of the qualitative study .. 88

7. DISCUSSION AND SYNTHESIS .. 93

7.1. Summary and results ... 93

7.2. Technical debt categories for complex system development 95

7.3. Future research and limitations of the study ... 99

8. CONCLUSION .. 101

REFERENCES ... 111

APPENDIX

Appendix A: List of interview questions based on different roles 117

Appendix B: IPMA project complexity participant -1- ... 118

Appendix C: IPMA project complexity participant -2- ... 119

Appendix D: Observation Form ... 120

Appendix E: TDVM model development strategy .. 121

xi

LIST OF TABLES

TABLES

Table 1 Common types of technical debt ... 10
Table 2 Common causes of TD .. 22
Table 3 Common effects of TD ... 24
Table 4 Model iteration details .. 28
Table 5 The categorization of technical debt effects for different stakeholder.......... 38
Table 6 Data collection protocol .. 45
Table 7 Participants’ roles and responsibilities .. 45
Table 8 Background information of Project#1 .. 49
Table 9 Effects of TD-1.1 .. 52
Table 10 Effects of TD-2.2, 1.2, 2.3, 3.2, 5: .. 53
Table 11 Background information of Project#2 .. 54
Table 12 Effects of TD-1.1 .. 57
Table 13 Effects of TD-1.2 .. 58
Table 14 Background information of Project#3 .. 58
Table 15 Effects of TD-1.1,1.2 .. 60
Table 16 Effects of TD-1.3, 2.1, 1.4, 2.2 ... 62
Table 17 Background information of Project#4 .. 62
Table 18 Effects of TD-1.3,2.1 .. 65
Table 19 Effects of TD-1.3,2.1 .. 66
Table 20 Effects of TD-1.2 .. 66
Table 21 Background information of Project#5 .. 66
Table 22 Effects of TD-1 ... 68
Table 23 Effects of TD-2.1 .. 69
Table 24 Effects of TD-2.2 .. 69
Table 25 Background information of Project#6 .. 70
Table 26 Effects of TD-1.1 .. 72
Table 27 Effects of TD-1.2, 2, 3 .. 73
Table 28 Effects of TD-4 ... 74
Table 29 Background information of Project#7 .. 75
Table 30 Effects of TD-1.1,1.2, 2.1,2.2 ... 78
Table 31 Effects of TD-3.1 .. 79
Table 32 Background information of Project #8 ... 80
Table 33 Effects of TD-1.1 .. 82
Table 34 Effects of TD-1.2,2.1,3.1,2.3,2.4, 2.5,2.6,1.3,4,2.7 83
Table 35 Td # of occurrence .. 94
Table 36 Validation questions .. 90
Table 37 Ratings of the 4th question answers .. 91
Table 38 Ratings of the 5th question answers .. 91

xii

LIST OF FIGURES

FIGURES

Figure 1. Martin Fowler’s technical debt quadrant .. 8
Figure 2 Steps of the research strategy ... 27

Figure 3 Hierarchical relationship between TDVM components 32
Figure 4 Hierarchical relationship between the use of Symbols and Notations 32
Figure 5 TDVM Timeline .. 33

Figure 6 Phases of TDVM .. 34
Figure 7 Symbols and notations used in TDVM .. 35
Figure 8 TD specific components .. 36
Figure 9 Classification of the effects of the icons .. 37

Figure 10 Level of the effects in different categories .. 37
Figure 11 System structure ... 43

Figure 12 Sub-System structure ... 44
Figure 13 Companies hierarchy ... 46
Figure 14 Timeline of Project #1 ... 50

Figure 15 TDVM of Project #1 .. 50

Figure 16 TDVM of Project #1.1 ... 51

Figure 17 TDVM of Project #1.2 ... 51
Figure 18 TDVM of Project #1.3 .. 53

Figure 19 Timeline of Project #2 ... 55
Figure 20 TDVM of Project #2 .. 56
Figure 21 TDVM of Project #2.1 .. 56
Figure 22 TDVM of Project #2.2 ... 57

Figure 23 Timeline of Project #3 ... 59
Figure 24 TDVM of Project #3 .. 59
Figure 25 TDVM of Project #3.1 ... 59
Figure 26 TDVM of Project #3.2 .. 60
Figure 27 TDVM of Project #3.3 ... 61

Figure 28 Timeline of Project #4 ... 63

Figure 29 TDVM of Project #4 .. 63

Figure 30 TDVM of Project #4.1 ... 64
Figure 31 TDVM of Project #4.2 ... 65
Figure 32 Timeline of Project #5 ... 67
Figure 33 TDVM of Project #5 ... 67
Figure 34 TDVM of Project #5.1 ... 68

Figure 35 TDVM of Project #5.2 ... 69
Figure 36 Timeline of Project #6 ... 70
Figure 37 TDVM of Project #6 .. 70
Figure 38 TDVM of Project #6.1 ... 71

xiii

Figure 39 TDVM of Project #6.2 ... 72
Figure 40 TDVM of Project #6.3 ... 73
Figure 41 Timeline of project #7 ... 75
Figure 42 TDVM of Project #7 .. 76
Figure 43 TDVM of Project #7.1 ... 76

Figure 44 TDVM of Project #7.2 ... 77
Figure 45 TDVM of Project #7.3 ... 79
Figure 46 Timeline of project #8 ... 80
Figure 47 TDVM of project #8 .. 81
Figure 48 TDVM of project #8.1 ... 81

Figure 49 TDVM of project #8.2 ... 82
Figure 50 TDVM of project #8.3 ... 83

Figure 51 Participants age distribution .. 85
Figure 52 Distribution of participants years of experience .. 85
Figure 53 Distribution of participants' proficiency .. 86
Figure 54 Distribution of participants' experiences - 1 .. 86

Figure 55 Distribution of participants' experiences -2 ... 87
Figure 56 Distribution of participants' educational level ... 87

Figure 57 Dedoose qualitative analysis screenshot .. 88
Figure 58 Technical debts in categories and subcategories 89
Figure 59 Matrix structure of qualitative analysis ... 89

Figure 60 Td # of occurrence ... 94

xiv

1

CHAPTER 1

INTRODUCTION

A complex system combines multiple articles with specific requirements and

essential functions, communicating with each other and the environment. The

consequences and results of decisions concerning system architecture and technical

design may be more complicated than predicted, depending on the system's

complexity. A minor component modification could cause multiple changes between

the associated modules (Austin Page et al., 2019). Complex systems require unique

approaches to solve managerial and technical problems. A high level of interactions

between modules and dependencies between disciplines make a program complex.

Complex projects require huge budgets due to the number of components, modules,

and subsystems they include. The development cycle includes phases such as:

design, testing, integration, implementation, and maintenance.

The development cost of the prototype systems forces companies to make decisions

with assumptions. Usually, system engineers had to foresee system requirements

without a rapid prototype. Even a minor change in the system requirements affects

the systems' software, hardware design, and testing phases (Austin Page et al., 2019).

Due to scheduling constraints, companies make mass production decisions parallel to

development phases. In that environment, a minor change in a critical component

may cause millions of losses or postpone the delivery schedule because of long-lead

times for production (Austin Page et al., 2019). High interaction between

development stages increases the system's overall complexity and makes technical

debt even more critical (Bar-Yam, 1997). Hiding a specification, skipping a vital

component testing, or defining an incorrect requirement may cause the project to fail.

As (Verdecchia et al.) indicate, as systems grow and become more complex, timely

design decisions and the methods followed can become an obstacle to the

development of the system. All these selected methods, approaches, and decisions

are possible sources for technical debt occurrence during the product life cycle.

Current studies in the literature calculate and examine the effects of technical debt on

software. However, the results of TD decisions also affect hardware, production, and

the overall quality of the product. In 1993 Cunningham described the technical debt

metaphor from the software development perspective (Cunningham, 1993). J.

Kerievsky grew the analogy by adding decisions and processes related to design and

architecture (Daughtry III & Kannampallil, 2005).

Architectural choices are especially critical during system development because the

decisions for short-term benefits may affect the project team's productivity and the

2

efficiency of the functional and non-functional requirements (MacCormack &

Sturtevant, 2016). Since companies experience cutting-edge technologies, each

development stage intertwines with the others. Providing early delivery for the

customer requires managing TD in each development phase of the systems. The

development of complex projects requires a significant investment and workforce.

The prototype can be delivered to the customer as a final product as the

management's decision because prototyping can be costly. The milestones in the

development timeline of a single system may require years to complete. Technical

debt monitoring and management activities are challenging in such systems for

project teams because the details and histories of each scenario may easily be

misconducted or lost (Guo et al., 2016). According to Li, one vital technical debt

management activity is the concept's visualization. An increased number of

determinations requires a support mechanism to understand the possible result of the

decisions and actions (Li et al., 2015a). The chosen solution is usually the most vital

stakeholder's opinion without proper guidance, management standard, or a

supporting tool. Since complex systems have increased connections and interfaces,

they may need to foresee the effects of the given decision on the systems'

architectural health (Fernández-Sánchez et al., 2017).

Today, as the user interfaces of the tools improve and their contribution to TD

management becomes visible, their market demand continues to increase among

companies (Vassallo et al., 2020)(Zampetti et al., 2017). (Christian B. Almazan)

examined Bandera, Esc/java2, FindBugs, Jlind, and PMD tools and revealed that the

results of these tools were not consistent with each other and contained false

negatives and false positives. TD tools were examined by (Tomas et al., 2013) and it

was shared which technical debts and which metrics it used. Moreover, soon,

(Avgeriou et al., 2021) discussed the technical debt management tools in the market

in their research and stated that TD management still needs to have a standard

approach.

Completion of complex projects is critical for companies to achieve their goals.

Because it either introduces a new technology or promises high profit. The

expectations from the delivery of the systems force upper management to involve

management processes of the development cycles. While developers try to adopt TD

management methods, senior management has not yet mastered the metaphor. The

upper management makes technical debt decisions that negatively affect project

management activities (Ernst et al., 2015).

1.1. Problem Statement

The effects of technical debt should be addressed in a broader framework, not just

software-based; other areas can be taken into account for the result and the reasons

that create the technical debt (Rosser & Norton, 2021). Many areas such as

production, purchasing, quality, systems, and project management can benefit from

technical debt management. In addition, the identification, measurement, and

management of technical debt in complex system development still remain an open

question for complex system projects.

3

In today's world, it is accepted that technical debt is a factor that affects the

management of the systems and their quality throughout their life. However,

methodologies and tools for managing, detecting, preventing, or turning it into an

advantage cannot serve system developers yet (The Future of Managing Technical

Debt). Rosser & Ouzzif, (2021b) analyzed metaphor in terms of hardware. However,

the management of technical debt in complex systems has yet to be studied and

standardized in the literature. The experience gained in the technical debt literature

can also be used in hardware-based decisions and processes. And this use can help

manage inefficiencies in production, use resources more efficiently, and speed up

calendars (Rosser & Ouzzif, 2021). Technical debt appears at every stage of the

system development process and places a heavy burden on project management,

including system recalls, even after the delivery of the strategies to the customer

(Harvard Business School, 2003; Henderson & Venkatraman, 1993). Despite this,

technical debt management still needs to be covered in the literature in areas other

than software. TD monitoring offers cost-effectiveness and project success. Still, the

industry needs software or a model that makes the traceability of technical debt

effective throughout the system development process.

Avgeriou suggested that these tools still need to be improved on the issues below:

 TD management tools fail to include all technical debt categories,

 Literature does not have a standard method for technical debt detection and

mon.itoring,

 Tools fail to consider factors other than software metrics.

The study aims to understand the effects of technical debt in complex system

development. To better understand the metaphor in complex system development, a

visualization tool is developed that represents the complex lifecycle of each TDs.

With that model, the study team aims to present the detailed connections between

decisions and causes of effects related to the technical debt in complex system.

1.2. Research Questions

We defined three research questions aligned with the issues discussed above. The

first question seeks to answer how the adverse effects of technical debt can be

pretended or managed during the complex system development cycle. The question

also addressed the effects of TD stakeholders other than software developers.

1. How to identify and track technical debt in complex system (hardware-

software) development projects?

Different technical debt categories are provided in the literature. Since the current

studies mainly focus on software-related technical debt, other stakeholders like

hardware development, supply chain, production, quality, and management are open

for research. The third question seeks how efficiently the current categories in the

literature help companies or individuals to answer their questions on the detection

and management of TD.

4

2. How sufficient are the categories available for detecting technical debt in

complex system projects?

3. How can negative effects on product quality, cost, and program schedule be

avoided when making technical debt decisions in complex system

development?

The literature shows that the management of projects becomes challenging as the

complexity of the systems increases. TD identification and management has a

significant role in achieving the project milestones in that complex environment.

1.3. Research Strategy

The research study was completed using qualitative research methods. The

qualitative research decision collected data from documents, observations and

interviews. The collected data continued with the development of the technical debt

visualization model and the application of the developed model in eight different

cases.

Before starting the model's development process, the literature was reviewed in

detail. As a result of this study, existing technical debt types were determined, and

general information was obtained about the importance of technical debt

management in complex system development.

After a detailed review of the literature, interviews were held with field experts.

Complex system development projects were selected for research, and the selection

method was validated based on the standards in the literature.

The technical debt visualization model was applied to the first case, and feedback

was collected from the experts. This information was used to improve the model's

structure and components. Iteratively, the findings were examined over 8 cases, and

the model continued to be developed. This approach aims to develop the model in a

way that will meet the needs of the users.

After the model's development, interview data were analyzed with the help of a

qualitative analysis tool, and the sufficiency of existing technical debt categories was

examined. New categories were shared as a result of this study.

For the validation of the study, interviews were done with field experts, and the

results were examined. Open-ended and scale-based questions were used in these

interviews. Research questions were answered with the developed model and

qualitative analysis, verified with validation interviews.

5

1.4. Structure of the Thesis

The contents of the remaining chapters of the thesis are explained below:

Chapter 2 includes a detailed literature review. First, this research investigated the

definitions of complex and technical debt concepts. As a result of this literature

research, the reasons, causes, and types of technical debts were shared with the

readers. Then, with the knowledge in the literature, the question of what factors make

a project complex and how the complexity level of the project is determined has been

answered.

Chapter 3 describes the methods used throughout the research. The research

proceeded through developing a visualization model and qualitative analysis of the

case data.

Chapter 4 explains why corporations require the TDVM model. The structure of the

model and its components are provided in subsequent sections.

In Chapter 5, methods followed during the implementation of the cases, and the

purpose of the case study was shared.

The questions that will reveal the suitability of the cases to answer the research

questions are explained in this chapter.

In the 6th chapter, the visualization of eight cases and detailed analyses of these

cases are shared. In addition, the collected interview data were subjected to

qualitative analysis in this chapter, and the results were reported.

The case study findings and qualitative analysis were collected in Chapter 7 and

evaluated from a macro perspective. This chapter includes new technical debt

categories proposed to participate in the literature and future works for the study.

In Chapter 8, the findings and results of the study were evaluated together with the

information gathered in the literature. The study's findings propose six improvement

articles that will affect technical debt management in complex system development.

Comprehensive findings and accomplishments of the thesis are described in chapter

8.

6

7

CHAPTER 2

BACKGROUND & LITERATURE REVIEW

Since its introduction, the technical debt metaphor has been discussed in many areas

of the literature. This section examines current studies on the detection, effects, and

causes of technical debt. The literature research included corresponding publications,

analysis of the universities, and studies of the institutions related to technical debt

and complex system development. For the sake of the study, the definition of

complexity and complex projects are also reviewed. In addition, factors in deciding

whether projects should be considered complex are presented in this chapter.

2.1. Technical Debt

This chapter provides a comprehensive technical debt definition in complex system

development projects from the conducted literature review. The following sections

represented the most common effects and causes of technical debt and guided the

study throughout the analysis and the conducting the cases.

2.1.1. What is technical Debt

Technical debt is a theory proposed by Cunningham (Cunningham, 1993). According

to Cunningham,

 "Shipping first time code is like going into debt. A little debt speeds

development so long as it is paid back promptly with a rewrite. Objects make

the cost of this transaction tolerable. The danger occurs when the debt is not

repaid. Every minute spent on not-quite-right code counts as interest on that

debt. Entire engineering organizations can be brought to a stand-still under

the debt load of an unconsolidated implementation, object-oriented or

otherwise."(Cunningham, 1993).

Cunningham exhibits that as long as technical debt is repaid and the source code's

quality is managed, software development activities will see the effects and benefits

of the theory.

In addition to Cunningham TD's definition: Kruchten, Ozkaya, and Nord extended

the theory, including the importance of architecture and other software development

activities (Kruchten et al., 2012)

8

(MacCormack & Sturtevant 2016) cited that challenging project delivery targets and

limited budgets are the main factors in the emergence of technical debt and increase

of future maintainability costs. These decisions are made in order to benefit in the

short term.

This research will utilize Ipek Özkaya’s (Ipek Özkaya, 2019) technical debt

definition, especially it examines and reflects existing findings of the literature in a

clear and comprehensive way (MacCormack & Sturtevant, 2016).

 In software-intensive systems, technical debt consists of design or

implementation constructs that are expedient in the short term but that set up

a technical context that can make a future change more costly or impossible.

Technical debt is a contingent liability whose impact is limited to internal

systems qualities-primarily, but not only, maintainability and evolvability

(Ipek Ozkaya, 2019) .

This scenario also happens in critical system development. With each iteration, the

system has more connections, bringing a more complex system with new questions.

These questions are increasing with the size of the software and the system.

Martin Fowler grouped the reasons behind the emergence of technical debts under

four main categories. These groups are of great importance in identifying and solving

TD-related problems. Because the decision mechanisms or approaches behind the

decisions is the first step toward identifying the problem. Since technical debt is

directly affected by the decisions made by project stakeholders, this quadrant was

taken into account in the analysis throughout the study (Martin Fowler).

Figure 1 Martin Fowler’s technical debt quadrant (Martin Fowler)

9

Carnegie Mellon University Software Engineering Institute examines the technical

debt lifecycle in four parts. According to (Carnegie Mellon University, 2016)

technical debt may be divided into four main categories:

 Awareness

 Occurrence

 Tipping Point

 Payoff

are the four classes of technical debt. In order to experience these steps, the project

has to evolve.

Occurrence is the first place when a project team faces TD. Awareness is the part

when the whole organization realizes the debt. When the actual cost of technical debt

starts to get higher than the original benefit, it is considered a tipping point. The last

part of the lifecycle is the final decision to manage technical debt from the system.

Technical debt arises from faulty decisions made especially in the early stages of

system architecture. More than finding technical debt, it also needs to be tracked and

managed. (Ernst et al., 2015) states that the lack of these tools and the fact that they

are not standardized cause the top management to stay away from the subject. The

article draws attention to the fact that the concept of technical debt is largely

unknown to employees, especially senior management.

(Ernst et al., 2015) points out companies does not have a standard management and

solution process in general, and the use of tools is not common.

The key problem is that technical debt cannot be made visible and cannot be

measured only with metrics. However, all the previously mentioned tools suffer from

some limitations. Existing metrics do not draw complete conclusions for

architectural issues. TD metrics measure the static quality of the code and can bring

it closer to a decent standard. Difficulties arise, however, when an attempt is made to

implement the process at the system level especially when the structure is complex.

The most serious disadvantage of the current studies is that they don't consider

hardware and system management when they deal with technical debt.

In addition to the TD metrics, it is only possible to manage and determine the effects

of technical debts if the system's overall structure is analyzed and monitored at a

macro level with a standart or a tool. Analyses of those metrics do not reveal or make

visible the problems that changes or errors may cause in connected modules. It does

not produce solutions and conclusions that support designers. In support of this

study; according to (Zazworka et al., 2013), the decisions or changes affecting the

design and system architecture cannot be detected effectively by the TD management

tools.

The results of decisions about system architecture and technical design can create

more significant effects and results than expected, depending on the complexity of

the structure. Even a simple component change can lead to many changes, directly or

10

indirectly, between the connected modules. The source of technical debt may arises

from the problems and wrong decisions experienced in the architecture and design of

the system.

However, all the studies reviewed so far suffer from the fact that there are no

standard methodologies and tools for detecting, monitoring and managing technical

debt in complex systems (Stephany Bellomo).

2.1.1.1. Types of technical debt

The most common types of technical debt in the literature are presented in Table 1.

These types have been used throughout the study to analyze and answer the research

questions.

Table 1 Common types of technical debt

Technical Debt

Types

Alves et

al., 2016)

(Rosser &

Norton,

2021)

(Li et al.,

2015a)

(Rosser &

Ouzzif,

2021)

(Verdecchia

)

Architecture √ √ √ √ √

Build √ √ √ √

Documentation √ √ √ √

Requirement √ √ √ √ √

Test √ √ √ √ √

Defect √ √

Design √ √ √

Implementation √ √

Infrastructure √ √

Code √ √ √

Process √

Quality √ √

Service √ √

Versioning √ √ √

Configuration √ √

Integration √ √

Modelling √ √

Depreciation √ √

People √ √

Automated Test √

Database √

Usability √

11

Architecture Debt:

(Alves et al., 2016) (Rosser & Norton, 2021) (Li et al., 2015a) (Rosser & Ouzzif,

2021a) (Verdecchia)(Alves et al., 2016)

The key causes of Architectural Technical Debt may be listed as follows; rework, re-

design, loss of performance in non-functional requirements, and decreased

productivity in the system architecture. ATD has been an important factor in

controlling the level of complexity of the system structure. This type of debt

becomes especially important as the project becomes more complex because the

scope of the decisions grows, and their effects cannot be easily predicted. In addition,

the decisions are taken by considering many criteria and constraints, which prepares

the atmosphere for technical debt. For instance, decisions that move system structure

to a more complex architecture than the system should be considered an architectural

debt. Architectural debt may consist of the following indicators:

 Dependency debt

o Needles dependencies

o Cyclic dependencies

o Underutilized dependencies

 Layering debt

o Flexibility

o Single point of failure

 System aging

 Violation of modularity

Build Debt:

(Ramač et al., 2022) (Alves et al., 2016) (Rosser & Norton, 2021) (Rosser & Ouzzif,

2021) (Verdecchia) (Alves et al., 2016)

Build debt is the technical debt type experienced during the "build" or

decisions/activities that affect the build process. Additional features the customer

does not need or want to extend the build time can be considered build debt. Build

debt may consist of the following indicators:

 Dependency debt

o Needles dependencies

o Cyclic dependencies

o Underutilized dependencies

 Additional features

 Slow algorithm

 Bad design

 Lack of quality

 Non-adoption of good practices

12

Documentation Debt:

(Nicolli, 2020) (Alves et al., 2016) (Rosser & Norton, 2021) (Rosser & Ouzzif,

2021) (Verdecchia) (O’REILLY, 2022)(Alves et al., 2016)

Document plays a vital role throughout the development and production process of

the project. The design, production quality, and other phases require explicit

expressions. The document defines the work to be done in all processes and the

method used through the given process. At this point, the fact that the document

needs to be clarified, understandable, and transparent can cause documentation debt.

A consequence of document debt is inefficiency and error-prone processes in both

the R&D and production stages. Documentation debt may consist of the following

indicators:

 Non-adaption of good practices

 Deadline

 Inaccurate time estimate

 Inappropriate planning

 Comments

 Incremental documentation

 Outdated/Incomplete documentation

 Nonexistent documentation

 Team Overload

 Postponing documentation activities

 Noneffective project management

 Poor allocation of resources

 The company does not give importance to documentation

Requirement Debt:

(Lenarduzzi & Fucci, 2019)((Li et al., 2015a) (Alves et al., 2016) (Rosser & Norton,

2021) (Rosser & Ouzzif, 2021) (Verdecchia)

There are three reasons why the requirement debt language has become so important

for the management of technical debt. These are structure, format, and content.

Stakeholders may interpret the same content in different ways depending on their

proficiency. Even experience level plays a role in understanding the content behind

requirements. Requirement debt may consist of the following indicators:

 Open-ended, non-verifiable terms

 Ambiguous Adverbs and Adjectives

 Subjective Language

 Non-adaption of good practices

 Requirement smell

 Management Debt

o Bad development productivity

13

o Not enough time for development

o Inappropriate planning

o Change Management Debt

 Requirement changes

Test Debt:

(Alves et al., 2016) (Rosser & Norton, 2021) (Li et al., 2015a) (Rosser & Ouzzif,

2021a) (Verdecchia)

Complex systems have many components and subsystems interfacing with each

other through different iteration levels. The on-site and timely verification of each

stage is, therefore, critical. Steps that are skipped, misconfigured, or postponed may

return as debt later. Incorrect planning of this process can lead to hidden problems,

especially in the large structure of complex systems. These issues make it

challenging to get to the real cause of the issues when faced with other variables.

Test debt may consist of the following indicators:

 Lack of KPI

 Lack of feedback

 Lack of standards

 Focus on short-term needs

 Non-adaption of good practices

 Lack of transparency between clients and developers

 Lack of team communication

 Bad motivation

 Non-adaption of good practices

o Don't interfere if it works

 The different scopes and functioning of the development and test

environment

Defect Debt:

(Alves et al., 2016) (Verdecchia)(Akbarinasaji et al., 2016)(Alves et al., 2016)

Defects are frequently encountered in system architecture. In this case, system

administrators need to predict the current and near-future effects of the defect. In

particular, the possibility of the defect affecting many complex interfaces creates a

problem. There is a possibility that the entire system will be affected while the

problem is being resolved. Defect debt may consist of the following indicators:

 Non-adaption of good practices

o Don't interfere if it works

 Not enough time for development

 Lack of team communication

 Budget and time pressure

o System-level fix/rework time

14

 People Debt

o Bad motivation

o Lack of professionals

 Focus on short-term needs

 Uncorrected known defects

Design Debt:

(Ramač et al., 2022) (Alves et al., 2016) (Li et al., 2015a) (Verdecchia) (Alves et al.,

2016)

According to a definition provided by Ward Cunningham:

 “Design debt is all the good design concepts of solutions that you skipped in

order to reach short-term goals. It’s all the corners you cut during or after

the design stage, the moments when somebody said: “Forget it, let’s do it the

simpler way, the users will make do.”

As discussed above, Design debt is the sum of the costs that we will have to pay in

the long term to solve the problem in the short term, throughout the entire design

cycle. As the systems grow and the architecture becomes complex, choosing to pay

off design debt may make more sense than solving the problem. Because interfering

with complex systems can have unexpected and unpredictable results. Design debt

may consist of the following indicators:

 Non-adaption of good practices

o Don't interfere if it works

 Budget and time pressure

 Lack of standards

 Grime

 Micro view to design/requirements

 Lack of transparency between clients and developers

 UX Debt:

o Not having design standards

 Lack of team communication

 Bad motivation

Implementation Debt:

(Rosser & Norton, 2021) (Rosser & Ouzzif, 2021a)

To prevent technical debt, companies have to manage software and hardware

development cycles without separating one phase from another. Especially systems

that require the implementation of different sub-systems, modules, and components

need complex decisions frequently. Each decision can affect different teams,

corresponding parts, and procedures. Implementation debt arises from incorrect or

15

missing decisions during the integration of the system. The result of implementation

debt usually leads to unpredictable behavior in the system. Implementation debt may

consist of the following indicators:

 Lack of monitoring activities

 Lack of system-level analysis

 Lack of standards

 Test Debt

o Non-adaption of good practices

 Not updating test modules

 Process Debt

o Not doing the tests in each increment

 Lack of team communication

 Bad motivation

Infrastructure Debt:

(Alves et al., 2016) (Verdecchia)

Infrastructure plays an active role in system development because if it is not

managed correctly, it becomes a significant constraint in the product's or system's

lifecycle. After the completion of the design phases, testing and production begins.

Most of the infrastructure needs to be completed before producing the first product

or prototype. That means infrastructure decisions usually have tight schedule

constraints. This situation may lead to some parts of the systems partially being

tested, produced, or integrated due to a lack of infrastructure. This type of technical

debt usually arises from the constraints related to project management activities,

schedule pressure, and cutting-edge technology. System architecture does not have a

management plan for scenarios that partially implement development lifecycle

activities. Especially for complex projects creating this type of plan requires a

massive amount of time and experienced system personnel. Technical debts arising

from a lack of infrastructure may therefore reveal many debts and risks that cause

each other. Infrastructure debt may consist of the following indicators:

 Outdated Infrastructure

 Not enough time for development

 Lack of team communication

 Inappropriate planning

 Design Debt

 Technology constraints

16

Code Debt:

(Alves et al., 2016)(Li et al., 2015a) (Verdecchia)

Software engineers or designers choose alternatives that provide partial or missing

code solutions depending on the system's current need. This solution solves the

problem in the short term but may possess numerous adverse effects in the long term.

Such alternatives usually require rework or even redesign processes to protect system

functions or performance soon. Code debt may consist of the following indicators:

 Non-adaption of good practices

o Don't interfere if it works

 Budget and time pressure

 Lack of standards

 Micro view to design/requirements

 Lack of transparency between clients and developers

 Lack of team communication

 Bad motivation

Process Debt:

(Alves et al., 2016)

It can be called all the works that contribute to the emergence of the system. Process

improvements need to give concrete direct results. Improvements are usually

reflected in the system in the long run. However, incomplete definition, non-

implementation, or faulty processes often occur during system development.

Problems arising from the need for more processes may cause additional

requirements for designers in complex systems. Skipping a test step or quality

control for a faulty assembly can present a problem that would not typically occur.

Process debt can cause the designer to try to solve a problem that would not usually

exist or, worse, adds an unnecessary improvement to the system. From time to time,

this problem cannot be recreated in the development environment and the time spent

can even be wasted entirely. Process debt may consist of the following indicators:

 Lack of standards

 Non-adaption of good practices

o Old methods and maps

 Lack of well-defined process

Quality Debt:

(Rosser & Norton, 2021) (Rosser & Ouzzif, 2021a)(Lenarduzzi et al., 2021)(Alves et

al., 2016)

Both hardware and software development activities depend on effective quality

control processes. Quality has a vital role in the detection and prevention of both

17

known and unknown practices and decisions in complex system management.

Controlling/monitoring standards creates an effective decision-making process. A

change in software configuration may require an update in the related hardware part.

A misapplication of configuration management may result in a decision without the

hardware team's opinion, creating a system malfunction. Quality prevents the

misapplication of these processes. Also, KPIs related to code or products cannot be

measured efficiently without effective quality management. A system with different

components requires quality control standards and measurement of each part to

manage problems even before they appear proactively. Measurement of system

health during software development with coding metrics has a similar role in

development. Misapplication of these standards, management procedures or short-

term solution-oriented decisions may result in problems in the system architecture in

the long term. Quality debt becomes more dangerous as the system's complexity

increases. Quality debt may consist of the following indicators:

 Lack of standards

 Lack of KPI’s

 # of issues or their co-occurrence

 Process Debt

o Lack of well-defined process

 Lack of quality control process

 Tolerance of bad practices

 Low external / internal quality

 Loss of confidence in the quality

 Failure to follow non-functional requirements

o Security

o Robustness

o Scalability

o Maintainability

o Performance

Service Debt:

(Alves et al., 2016) (Verdecchia)(Alves et al., 2016)

The term service will be used solely when referring to external or web services to

provide and manage some functions and requirements. Interfaces with these services

must be verified, managed, and maintained as long as the system remains functional.

For example, the deterioration of a predetermined message format over time or

incomplete transmission of data from time to time may cause problems in the system.

Service debt may consist of the following indicators:

 Lack of transparency between clients and developers

 Lack of team communication

 The number of interfaces affected

 The number of users affected

 Replacement of web service

18

 Lack of standards

Versioning Debt:

(Alves et al., 2016) (Li et al., 2015a) (Verdecchia)

Processes and documents, especially software and hardware, are stored under

different versions during system development. These versions are critical for easier

tracking and management of complex systems. Therefore, version changes play a

vital role in configuration management in detecting whether the change is minor or

significant. Redundant versions make the process difficult to manage in the long run,

while unfragmented unbuilt versions increase the system's complexity. Versioning

debt may consist of the following indicators:

 Unnecessary version update

 Lack of standards

 Failure to update versions

Configuration Debt:

(O’REILLY, 2022) (Rosser & Norton, 2021)(Rosser & Ouzzif, 2021)

Configuration management is essential to the orderly building of complex systems.

In order to understand the cause of the system's problems, analyses are often made

with configuration. Configuration management allows it to reach the system's history

and provides a broader look at sub-systems and components. For example, even a

malfunction in the chipset level can cause a defect at the system level. That problem

may arise from the specific batch of that chipset. Configuration management shows

the batch and test reports to find the solution. This type of analysis is only possible

with a detailed structured report. The development team could obtain valuable

information to determine the defects' sources with a detailed configuration.

Configuration debt may consist of the following indicators:

 Versioning Debt

o Failure to plan and manage

 Collapsing branches

 Not having a branching strategy

 Documentation Debt

 Building from scratch

 Non-adaption of good practices

Integration Debt:

(Alves et al., 2016) (Rosser & Norton, 2021) (Li et al., 2015a) (Rosser & Ouzzif,

2021a) (Verdecchia)(Lenarduzzi et al., 2021)

19

Products that have been verified and working independently from each other may

experience unexpected problems when interfaces are conducted. In software

management, it may appear as wrong-structured messages or unmanageable buffers.

Practices that violate the laws of physics can be an example of hardware-related

integration problems, which have a considerable potential to create technical debt in

the system. The system's complexity generally requires a lighter, more ergonomic

design suitable for narrower spaces. Because in today's technology, we need to

optimize all our resources, even in micro sizes, to increase efficiency and ensure

innovation. These constraints show the criticalness of the integration phase and how

it creates an atmosphere for the appearance of technical debt. Integration is also a

complex process with the potential for all other troubles. Because, at this stage, all

systems are expected to work in full communication with each other. Integration debt

may consist of the following indicators:

 Lack of monitoring activities

 Lack of system-level analysis

 Lack of standards

 Impact on other features

 Wasted time/effort

 Number of people working

 Test Debt

o Non-adaption of good practices

 Not updating test modules

 Process Debt

o Not doing the tests in each increment

 Lack of team communication

 Bad motivation

Modelling & Simulation Debt:

(Rosser & Norton, 2021) (Rosser & Ouzzif, 2021a) (Alves et al., 2016; Lenarduzzi

et al., 2021)

Modeling and simulation are critical tool for complex system management because it

provides better alternatives for companies in many ways. An important example of

modeling and simulation advantages is cheaper solutions and shorter development

time for critical activities. Due to infrastructure or the nature of development

requirements, some tests and actions can only be performed via simulation or

modeling. Modelling & Simulation debt may consist of the following indicators:

 Project size and complexity

 Lack of system-level analysis

 Implementation debt

 Violation of modularity

 Requirement debt

o Requirement backlog list

20

 Test debt

o Incomplete tests

Depreciation Debt:

 (Rosser & Norton, 2021) (Rosser & Ouzzif, 2021a) (Alves et al., 2016)

Complex systems designed for long-term needs require a stable and updated design.

Even as technology advances, design should stay caught up. Some parts may become

obsolete, or the design may be costly and inefficient as production methods require

out-of-date technologies. System managers could choose a rework or reuse.

Production may become impossible with current infrastructures since they could be

unsuitable for modern interfaces. This type of environment makes the management

of TD difficult and unpredictable. Depreciation debt may consist of the following

indicators:

 Infrastructure debt

o Outdated infrastructure

 Service Debt

o Outdated service

 Failure to follow non-functional requirements

o Security

o Robustness

o Scalability

o Maintainability

o Performance

 Feature over product

 Defect debt

o Uncorrected known defects

People Debt:

(Alves et al., 2016)

Complex systems require complex collaboration. These complicated teams have

numerous people with various backgrounds and expertise. Emotional intelligence

and IQs play a vital role in successfully forming the system. If complex

communication does not manage between teams, this can create serious

consequences. Correspondingly, employees start acting independently or not

complying with the processes. People's debt may consist of the following indicators:

 Lack of training and development

 Failure to adopt mission and vision

 Lack of feedback

 Lack of transparency between team members

 Lack of team communication

21

 Unsolved individual problems

Automated Test Debt:

(Alves et al., 2016) (Li et al., 2015a)

Automation is of great importance in terms of efficiency, especially when it comes to

the production phase. Thanks to automation, resources can be shifted to other

projects. Problems arising from human error can be prevented when automation is

performed correctly. Of course, the opposite is possible. Incorrectly defined steps or

components that lose their function over time can cause severe problems if

overlooked. Automated Test debt may consist of the following indicators:

 Lack of KPI

 Reuse of modules and scripts

 Lack of feedback

 Lack of standards

 Focus on short-term needs

 Non-adaption of good practices

 Lack of transparency between clients and developers

 Lack of team communication

o Bad motivation

 Non-adaption of good practices

 Don't interfere if it works

 The different scopes and functioning of the development and test

environment

Usability Debt:

(Shedd, 2015) (Alves et al., 2016) (Li et al., 2015a)

Usability issues need to comprehensively demonstrate their impact. Even in simple

systems, usability issues occur after going to the customer or the end user. Complex

systems go through many stages until the product reaches the end user, and some

functions may encounter problems after passing many layers. Alternatively, the

problem may grow and emerge with a more significant impact at the last point.

Usability debt may consist of the following indicators:

 Lack of standards

o Usability standards

 Not having a shared language

 Failure to monitor issues

22

2.1.1.2. Causes of technical debt

The most common effects of technical debt in the literature are presented in Table 2.

These causes have been used throughout the study to analyze and answer the

research questions.

Table 2 Common causes of TD

Causes of

Technical Debt

(Ramac

et al.,

2020)

(Ramač

et al.,

2022b)

(Rios et

al.,

2018)

(Rios et

al.,

2020)

(Ernst et

al.,

2015)

(Martini

et al.,

2014)

Deadline √ √ √ √ √

Ineffective

Project

Management

√ √ √ √ √

Lack of

Experience

√ √ √ √

Test not

performed

√ √ √

Misconduct √

Focus on

producing

more at the

expense of

quality

√ √

Lack of

qualified

professionals

√

√ √ √

Non-adoption

of good

practicies

√ √ √ √

Lack of

refactoring

√ √ √

Poor allocation

of resources

√

Inappropriate

planning

 √ √ √

Preassure √

Inaccurate

time estimate

 √

Lack of a well-

defined process

 √ √ √ √

23

Table 2 (cont’d)

Lack of

knowledge

 √ √

Incomplete

documentation

 √ √ √ √

Lack of

commitment

 √ √

Bad

architectural

choices

 √ √

Overly

complex

structure

 √

Obsolete

technology

 √

Insufficient

test

automation

 √

Inter module

dependencies

 √

Poor

deployment

process

 √

Business

evolution

 √

Feature over

product

 √

Reuse √

Paralel

development

 √

Technology

evolution

 √

Human factor √

24

2.1.1.3. Effects of technical debt

The most common effects of technical debt in the literature are presented in the

Table 3. These effects have been used throughout the study to analyze and answer

the research questions.

Table 3 Common effects of TD

Effects of

Technical Debt

(Ramac et

al., 2020)

(Ramač et

al.,

2022b)

(Rios et

al., 2018)

(Rios et

al., 2020)

(Rios et

al., 2019)

Low

maintainability

√ √ √ √ √

Increased effort √

Rework √ √ √ √ √

Low external

quality

√ √

Increased cost √ √

Delivery delay √ √ √ √ √

Developer

dissatisfaction

√

Poor code

readability

√

Need of

recaftoring

√ √

Poor allocation of

resources

√

Increased effort √

Bad code √ √ √ √

Low performance √ √ √ √

Financial loss √ √ √ √

Low quality √ √ √

Team

demotivation

 √ √ √

Stakeholder

dissatisfaction

 √ √ √

Inadequate

documantation

 √ √ √

25

2.1.2. What makes a project complex?

This research also utilizes two definitions of the word "complex," which, based on

the Cambridge Dictionary, is "difficult to understand or find an answer to because of

having many different parts" and "involving a lot of different but related

parts." Managing the high number of interconnected elements and their relationships

with each other to provide final behaviour determines the system's complexity. (Bar-

Yam, 1997)

In addition, as the size of the system increases, management of the system

architecture becomes difficult (ROBERT NORD, 2016).For the sake of this research,

an increased level of interconnection between elements will be considered a

significant factor in indicating a high level of complexity.

 “Given today’s dynamic security environment, it is impossible to formulate a

complete set of software requirements ahead of time. Without a robust

underlying architecture, someone working on a low-level function will be

unable to understand all the end applications in which a function might be

used. Therefore, the architect must try to define modules in a way that avoids

cross-couplings, whereby changes in one module impact and require changes

to other modules (Defense Science Board, 2018).

As the project's complexity increases, the number of systems and components that

are affected by TD decisions increases. That finding reveals the need to evaluate the

impacts in all potential project management topics, from schedule management to

budget plans, from risk management to design and development (Baccarini, 1996).

The decisions taken during the planning and management of project management

areas create an environment for the occurrence of technical debt.

The need for low coupling and high cohesion is highlighted in the study because of

the long-term benefit of effective system management. Precisely planned and

designed system architecture is essential to eliminate technical debts before they

occur. This proactive approach is vital in preventing unexpected scenarios, problems,

and errors that potentially cause TD occurrence.

26

27

CHAPTER 3

RESEARCH METHODOLOGY

This chapter presents the model development method created to facilitate the

analysis of the data collected in the research and to visualize technical debt

management. In addition, the method used to analyze interview data to determine the

technical debt categories is shared.

3.1. Design science methodology

Today's industry forces companies to invest in IT systems. With this approach,

companies can achieve an advantage in system development and quickly manage

risks with less cost (Harvard Business School, 2015) (Henderson & Venkatraman,

1993) . Managing technical debt with IT systems is still new on companies' radars.

Companies that follow up technical debt with IT systems in system management will

make an innovative development, even in software, with a broader experience and

knowledge about the requirement of the direction of the topic.

Design science research aims to find solutions by addressing fundamental problems

in academics and industry. These solutions produce innovative artifacts and

contribute to the literature (Brocke et al., 2020). The steps of the research strategy

with the guidance of design science research have been presented below in Figure 2.

Figure 2 Steps of the research strategy

28

Below we provide the steps we follow to develop a technical debt visualization

model. Resources selected for the development of the TDVM had to represent the

experimental, descriptive, and enhancing aspects of complex systems, which have

been provided with the selected case studies.

Appendix E illustrates the stages followed while developing the technical debt

visualization model. The following steps are:

 Definition of the problem with literature review and feedback from experts,

 Specification of the requirements for the model,

 Development of the selected solution alternative,

 Iterations for the improvement of the model,

 Verification and validation of the model.

With the analysis of the interview data and expert feedback, the technical debt

visualization model experienced three different iterations. The model reflected each

iteration of various departments and development environments' needs. The

Technical Debt Visualization Model (TDVM) aims to present the timeline of

technical debts and their relations with each other with an easy-to-understand

interface. The details of the iterations between models are shown in Table 4.

Table 4 Model iteration details

Iterations: Model V.1. Model V.2. Model V.3.

Timeline - Integrated. Iteration was not

available.

TDVM

Lanes

- Integrated. Iteration was not

available.

Development

Environment

- Integrated. Iteration was not

available.

Symbols and

notations

Effects are

integrated under a

single category.

The effects of

technical debts on

different

departments were

integrated.

The effect rates have

been re-adjusted

according to the

expert's feedback.

3.2. TD categorization in complex projects

To provide data from different departments variety of subjects has been chosen.

Interviews have been conducted with the questions provided in appendix-A. Open-

ended questions directed to subjects. After the interviews with the subjects, the text

was uploaded to the Dedoose software.

As described in the case study chapter, information was gathered from the

production, quality, system, design, and project management professionals. These

domain experts come from different educational backgrounds, which can be

29

categorized as a doctorate, master, and bachelors. The research team aimed to reveal

the effects of TD and its examples outside the perspective of software with different

discipline experts. Complex system projects were talked about at different

development stages and different periods. Some of these were projects in production,

and some were under development. During the interview, it was understood that

these processes did not progress linearly. There were many feedbacks from one

development stage to another on the timeline.

The data was analyzed, and TDs were determined using the existing categories. The

research team created new categories and sub-categories where the categories in the

literature were missing or insufficient to describe the TDs. After the analysis, an

interview was conducted to evaluate the categories found and to receive feedback

from the subjects. The subjects determined for final interviews were selected from

the executive staff. The aim was to evaluate the views and perspectives of people

involved in complex system development projects who have experienced different

TD examples.

30

31

CHAPTER 4

VISUALIZATION

The visualization chapter introduces the reasons why companies and individuals

need the model. Subsequent sections provide the details and the components for the

use of the model.

4.1. What is the technical debt visualization model?

The technical debt visualization model analyzes and manages real-time or historical

technical debt scenarios. It shows the decisions and processes that lead to technical

debt on the timeline. It reveals their effects and allows us to analyze the points where

they were noticed. It demonstrates the effects not only on the software but also on

other relevant stakeholders.

Technical debt not follows a linear timeline. It may be necessary to go back from

time to time to understand and learn from the process. For example, the exact time

when technical debt occurs may be much later than when it was created. Extending

this range creates risks. In addition, it is of great importance to follow these stages to

improve the processes.

The complex system development process dealing with many decisions and factors is

intertwined with technical debts. Moreover, understanding the effects of decisions is

quite tricky as it depends on many interfaces. This model aims to express the process

more clearly. At the same time, it provides an opportunity to analyze the gaps in the

process, erroneous decisions, and points that can be improved. In addition, with this

model, decisions that may lead to technical debt can be determined in advance, and

awareness of the existing technical obligations in the system can be achieved.

32

4.2. Description of TDVM Components

Figure 3 Hierarchical relationship between TDVM components

Figure 3 presents the hierarchical relationship between the use of TDVM

components.

Figure 4 Hierarchical relationship between the use of Symbols and Notations

Figure 4 presents the hierarchical relationship between the use of Symbols and

Notations.

The description, details, and usage of each component are given below.

33

4.2.1. TDVM Timeline

Figure 5 TDVM Timeline

The timeline is represented in icon #1 in Figure 5. It creates a timeline to indicate the

relevant technical debt scenario's start, end, and critical milestones.

4.2.2. TDVM Lanes

Lanes of the TDVM represented at box #2 in Figure 5. Swimlanes are used in 2

stages. In the outer lane, selected systems are expressed. As many systems as desired

can be created. Lane can be created for multiple productions of the same system.

Alternatively, different systems can be added to manage TDs simultaneously.

An extra lane can be created using TDVM components to provide extra information

and explain the process. It is critical to describe the process as short and straight as

possible. Presenting the details in these additional lanes helps make TDVM clear and

understandable.

4.2.3. TDVM Environment

Inner lanes are defined to monitor the progress according to the development

environment.

 Production,

 Pilot,

 Job shop,

 Prototype

This list above is non-limiting but can be used as a starting point. The person or

organization can use the model to shape their business need.

34

Figure 6 Phases of Development in TDVM

The following phases in Figure 6 may alternate or repeat throughout the system

development cycle. It depends on the status of the project and the system

development method. Depending on the system's requirements, the project team may

choose not to implement or partially implement some of the system development

phases. These phases are:

• Requirements:

This stage of system development is where the requirements of all modules, units,

subsystems, and systems of the architecture are determined.

• Design:

It is the phase where the design that meets the system requirements is made

according to the determined needs. It includes not only the software but also the

hardware design.

• Validation and Verification:

This phase expresses the verification and validation stages of designs. It can be

repeated, depending on the way companies do business, and can be completed using

different methods.

35

• Implementation:

The implementation phase is when the complex system components are created

Or implemented. Facilities and systems are also tested, inspected, adjusted, modified,

and validated during the implementation phase to ensure that the project performs to

specifications.

• Integration

Integration is the phase where the software and hardware components of the project

are integrated at the system level. Modules and sub-systems that have been produced

and verified to meet different requirements in an integrated manner fulfill the

system's task at the integration phase.

• Maintenance

Complex systems usually have a very long life. After the completion of acceptance

tests with the customer, the maintenance period begins. During this process, the

system's maintenance, rework, and redesign processes are expressed at this stage.

Companies or individuals can add or remove system development phases from the

list according to their development cycles.

4.2.4. Symbols and notations used in TDVM

Figure 7 Symbols and notations used in TDVM

 Process is represented in box #4 in Figure 7.

The process box, represented as four, expresses any step in the technical debt

scenario contributing to the system development. The details of the operation

performed is expressed in the description section. A unique id is given via # for easy

tracking of TD.

 Start – End represented in box #5 in Figure 7.

Five is used to indicate that the process has started or ended. In the Description part,

the beginning or the end is expressed. A unique id is given via # for easy tracking of

TD.

 The decision box is represented in box #6 in Figure 7.

36

Decisions are of great importance in technical debt management. For this reason, the

"red exclamation point" is used to express the importance of the relevant decision.

The importance of the TD effect is directly proportional to the number of

exclamation points #7.

 The connection arrow is represented at box #7 in Figure 7.

#7 is used to connect two entities. The description section includes details to be

given in the process transition. The dashed arrow can be used to give additional

information between two entities.

 The components expressed in Figure 7. represent essential details about

technical debt. In particular, these components are expressed in different

colors to convey that these points on the TDVM are critical.

Figure 8 TD specific components

 Creation of TD represented at box #8 in Figure 8.

8 indicates the moment when technical debt created on the system. Technical debt

often needs to be noticed when it is created in the system. Many teams may only be

aware that they are struggling with technical debt once the effects become apparent.

TD type can be intentional or unintentional, as in the literature. A unique id is given

via # for easy tracking of TD. In the Description section, the details that caused the

creation of technical debt are given. In the Causes section, the reasons for creating

technical debt are given.

 Occurance of TD represented at box #9 in Figure 8.

Nine indicates the first moment when technical debt is noticed in the system. A

unique id is given via # for easy tracking of TD and. The details that cause the

technical debt occurrence are shown in the description section. In the type section,

the kind of technical debt is issued.

 Effect of TD represented at box #10 in Figure 8.

37

The effects of technical debt are expressed in Figure 8. Details of the results are

given in the description section. Icons show the distribution of the impact across

different departments. A unique id is given via # for easy tracking of TD. The Figure

8. provides a classification of the effects of the icons against the number of uses.

Figure 9 Classification of the effects of the icons

Technical debts can create various levels of impact on different fields in the complex

system development cycle. The level of the effects in different categories is given in

the Figure 9.

Figure 10 Level of the effects in different categories

Institutions, organizations, and individuals can reconstruct or modify these tables

according to monitor and present their needs. Details of the icons are given in the

table below:

The categorization of technical debt effects for different stakeholders is given in the

Table 5. The thesis adhered to the scope in this table while determining the effects.

38

Table 5 The categorization of technical debt effects for different stakeholder

Category Effects:

Quality

The effect of technical debt on quality processes:

 Program Quality: Failure to operate project management processes

from quality perspective,

 Production Quality: Failure to operate the quality standards in the

production,

 Process Quality: Failure to follow quality standards and methods

 System quality: Failure to meet the functional and non-functional

requirements

Hardware Rework, redesign and reuse actions for hardware.

Production Failure to operate production lines efficiently

 Preventing the efficient use of production resources

Supply

Chain
 Failure to manage supply chain operations because of risky

purchasing decisions,

 Repetitive purchasing and logistics operations with no added value

 Loss of price advantage and bargaining opportunity

Schedule Shifts in the system delivery schedule due to technical debt

Budget Additional expenses in the project budget due to technical debt

Reputation Loss of customer confidence,

 The customer devises a pessimistic perspective against the system.

4.3. How to use the technical debt visualization model on your complex

projects?

In previous chapters, the purpose and components of TDVM were shared in detail.

This section will explain how the model can be used in any case.

1. Create TDVM swim lanes:

As a starting point, swim lanes should be drawn for the system which will be

developed or produced. For example,

 System-1 Production,

 System-1 Prototype, and

 System-2 Production

Can be drawn for the basis of the model.

2. Create a timeline and update through the case:

Technical debt only sometimes follows a straight line on the timeline. For this

reason, the timeline should be updated as the process progresses and new

developments are noticed in the system development cycle. The timeline must

represent the critical milestones and the case's start and end date.

39

3. Name the TDVM diagram:

After the swimlane and timeline are created, companies should assign a name to

TDVM to track and store the model in the company's knowledge database.

4. Start the process by adding the starting event:

The open circle is added to the associated swimlane to initiate operations. If a

description wants to be added, it can be written inside the circle.

5. Add activities:

After the start node is placed, activities that create value for the case begin to add to

the model. Decision boxes must be used at decision points. Exclamation marks can

be placed inside the decision boxes that indicate the importance of the decision. The

number of exclamation marks indicates whether the change is minor or significant.

Decisions are important because they are the possible points at which technical debt

can be born.

For this reason, it is essential for the model. Technical debt is sometimes determined

at the time of its creation. In this case, the creation box is used. The reasons causing

the technical debt should include in the creation box to be used in later process

improvement analysis. Technical debt occurrence is quite critical. Because the

factors that can affect the system's performance begin to be managed at the

occurrence of TD. Type of technical debt should be included in the occurrence box.

6. Customize TD effect categories:

Technical debt can have multiple effects. Effects are represent in the effect box. The

effect box is essential to show the effects of technical debt on the system and

stakeholders.

As a basis, various categories of technical debt effects have been shared above for

the use of the model. Companies and individuals can interpret the model according to

their usage industries. They can create new categories for TD effects or update the

degrees of effects. When the effects of a technical debt arise, the technical debt effect

box is filled using this table.

7. Add development phases:

After the activities are added, the relevant phase is drawn below. Thus, the model

users are warned when a new phase is passed. This step must be repeated at each

phase transition.

40

8. End the process by adding the ending event:

The open circle is added to the associated swimlane to initiate operations. If a

description wants to be added, it can be written inside the circle.

9. Draw an extra lane:

Scenarios in complex structures contain many activities. For this reason, they can be

challenging to understand and follow. For activities that require additional details in

TDVM, a lane is drawn under the relevant component, and the information flow is

given there. The complete picture remains more transparent and more understandable

with using extra lanes.

41

CHAPTER 5

 IMPLEMENTATION

The purpose of case studies is to collect data to analyze finding answers to the

study's research questions. In order to complete the study, complex project data from

different development strategies were collected from the participants. This

information was analyzed with the developed model provided with our study. For the

analysis to conclude, all processes impacting technical debt were visualized to

answer RQ2.

The sufficiency of the existing categories and new category suggestions were shared.

We used the available categories in the literature to constitute the final result. A

third-party tool was used for the qualitative analysis. The detailed analysis of outputs

used in answering RQ3.

By evaluating the case studies and qualitative analysis findings, suggestions are

presented to assist companies and individuals in managing technical debt in complex

system development projects. The research team aimed to answer RQ1 with

recommendations.

5.1. Multiple Case Study

Literature and studies show no standard definition or method to describe a case study

(Baškarada, 2014). A case study is a research approach that assists researchers,

individuals, and companies in comprehending phenomena in various fields in real-

life settings (Karlsson). The case study's main goal and the most complex challenge

is creating an understanding of the given subject for the readers (Issue-Based

Observation Form for Case Studies in Science Education)(Gustafsson & Gustafsson).

Due to the complex nature of the systems, the analysis of the cases was quite

challenging in this study. Creating a common conclusion from the perspectives and

scenarios of different experts required a great deal of effort, as the literature

indicates.

5.2. Purpose of the case study

The complex system development cycle often encounters technical debt. The

purpose of that multiple case study is to reveal the effects of technical debt on

hardware and other stakeholders involved in the development cycle. With these

exploratory project studies, the research team investigated and aimed to indicate

improvement possibilities for visualizing TD in complex system development.

42

These goals evaluate the following research questions:

RQ1: How sufficient is TDVM for monitoring and visualizing technical debt in

complex systems?

RQ2: Can hardware, production, quality, and stakeholders other than software teams

make decisions that create technical debt during the system development process? In

complex systems environment, how accurate to make decisions without considering

the conditions of other stakeholders?

RQ3: Should other stakeholders of the system development lifecycle be included in

the management of technical debt?

Subsequent chapters describe the findings and the background of each project.

5.3. Case Study Design

This chapter gives the mechanism behind the research details for the cases selected

and analyzed throughout the research. In the following sub-sections, with the

guidance of the knowledge of the literature;

 The considered factors for the case selection,

 The system architecture and the structure of the project on which

observations and interviews are made,

 Tools and methods used when collecting and analyzing data

are described in detail and documented in that manner.

5.4. Case selection criteria

While determining the case selection criteria, the experts' opinions were gathered in

the first phase. As a result, sub-systems and systems have many interfaces, and the

increased size of project teams considered as projects require management of TD.

Selected project scenarios include the following categories:

 Technical debt has been created in the past, and its effects have ended,

 Technical debt that has occurred in the past and whose effects continue,

 Technical debt has been created, but the effects still need to be discovered.

It is observed that these categories occurred both individually or together, depending

on the scenarios.

Current studies in the literature examine technical debt in terms of software. This

research also focuses on the effects of TD on different areas like; hardware,

production, quality, supply chain, and software development processes. Selected

cases also include decisions affecting the systems' hardware and software

development cycles. The standard prepared by IPMA was used to determine the

43

project's complexity level where the interview and case data will be collected. 2

people did this analysis, and the result showed that the project was complex. The

corresponding result was shared in Appendix B and C.

5.5. Case Conduct

Case product consists of 7 sub-systems that have interfaces with each other. The

details of the connection between different sub-systems are detailed in Figure 11.

The total system bill of the material consists of more than 13.000 products and raw

materials. Although the complexity of the architecture, system managers succeeded

in determining the low coupled design. Despite the proper system structure design,

this project is significant in examining the effects of technical debt on complex

system development.

Figure 11 The system structure

Although the complexity of the architecture, system managers succeeded in

determining the low coupled design. Despite the proper system structure design, this

project is significant in examining the effects of technical debt on complex system

development.

The primary subsystem that manages the functions of others is called Sub-System A-

B. In Figure 11. Figure 11, Subsystem A-B is detailed in subcomponents. Interfaces

have been lowered and need to be partially reflected due to confidentiality. Each

subsystem, A and B, provides the technical requirements of most of the equivalent

products in the market. Moreover, those two complex architectures operate together

with complex interfaces and networks. For this reason, most of the cases were

selected from subsystem A-B.

The development and production period of the most straightforward component of

the system was recorded as 14 months. It took more than 7+ years to completion of

the entire system, from design to production. Although more than 200 engineers and

technicians have worked in developing the system, it is currently considered one of

the company's most innovative products.

44

Figure 12 The Sub-System structures

5.6. Data Collection Protocol:

The researcher is an active participant of the project, and the study was conducted

with direct observations. The findings are recorded continuously in an unstructured

manner. In Table 6, the details of the interviews with the participants during the data

collection process are given.

45

Table 6 Data collection protocol

Phases of data

collection

Number of

Participants

Hours

of Data

Number

of

Sessions

Roles Involved

Preliminary

interviews

8 7,2 1 Developers, System

Architects, Project Managers,

Testers,

Team Leaders,

Production Manager,

Supply and Chain Manager,

Supplier General Manager

Validation

interviews

3 3 1 Program Manager,

System Manager,

Design Team Leader

Informal

interactions

10 2 1 Developers, System

Architects, Project Managers,

Testers,

Team Leaders,

Production Manager,

Supply and Chain Manager,

Supplier General Manager

5.6.1. Interviews

The questions directed to the participants during the Interviews are presented in

Appendix A.

Table 7 Participants’ roles and responsibilities

Role: Definition:

Software

developers and

team leaders

- Responsible from the design of software development and

management of sub systems in terms of software

- Verification and deployment of the designs

- Technical documentation

- Improvements of processes and designs

Program managers

- Monitoring the project,

- Making strategic decisions,

- Management of the teams,

- Budget management

- Stakeholder management

- Creating WBS and milestones for project teams

Hardware

developers and

team leaders

- Responsible from the design of hardware development and

management of sub systems in terms of hardware

- Verification and deployment of the designs

- Technical documentation

- Improvements of processes and designs

46

Table 7 (cont’d)

System managers

- Responsible from the requirement elicitation,

- Management of the system architecture,

- Management of the technical interaction between software and

hardware teams

-Validation and verification of system level requirements

-Responsible from the integration of the system

Program sponsors

- Making decisions for strategic problems,

- Monitoring long term objectives,

- Program management

Project planning

engineers

- Responsible from the master schedule,

- Monitoring the budget and time constraints,

- Reporting the status of the project

Production

managers

- Planning and organizing master schedule,

- Monitoring the budget and time constraints of production,

- Reporting the status of the projects,

- Assigning resources

- Coordinating production teams

Supply chain

managers

- Monitoring and planning supply chain needs,

- Inventory planning and management,

- Warehouse management,

- Assigning resources,

- Supply chain and data management

The company's employees'

responsibilities and hierarchy,

represented in Table 7, are

essential when analyzing the

decisions taken regarding

managing technical debt in

complex system

development.

 Figure 13 The Companies hierarchy

47

5.6.2. Observation Forms

Each stage of the system development lifecycle was observed with the observation

forms, which are represented in Appendix D. These findings are from the scrum,

system, and project meetings.

Feedback from system architects and project managers was also essential to

understanding technical debt's effect on the system architecture. Furthermore, these

feedbacks become guidelines to focus on the troubling parts of the system

development activities and decision mechanisms.

Observations were conducted with two participants to provide validation to the

findings. If the results match 80 percent, the statement was deemed validated.

5.6.3. The Dedoose Tool

Dedoos software was used to analyze the qualitative data collected from interviews

and observations.

48

49

CHAPTER 6

CASE ANALYSIS

The data collected for the case study were visualized using the technical debt

visualization model. Afterward, the research results for improvements and

developments were shared on the emerging model.

6.1. Using TDVM to identify and monitor TD

Chapter 7 provides a detailed analysis of 8 projects by implementing a technical debt

visualization model. Interviews with domain experts are used for the study. The

model offers a management and monitoring mechanism for decisions and processes

affecting TD throughout the development and production lifecycle of the system. At

the end of the chapter, the findings are presented.

6.1.1. Background

Table 8 Background information of Project#1

Case Subject: 20+ years of engineering domain experience (Abbreviated

as Alpha

Company: Subcontractor Named as Theta

Role: Ceo of the company Theta

Contractor: Company named as CA

Interview Duration: 47 minutes

Product / Sub-

System:

An essential part of sub-system A,B (Named as product

Beta)

Since 1999, Theta operates as a subcontractor in the aviation industry. The company

has over 150 employees, most of whom are R&D personnel. Theta’s domain of the

subject is the aviation industry, and the subcontractor has more than 20 experience

with the Theta.

Theta is responsible for developing an essential component of Sub-System A-B as a

subcontractor (referred to as product Beta). During the contracting stage, it was

discussed and agreed upon that any delay in the delivery schedule of the product

would affect the sub-system A-B’s delivery schedule.

50

Recently, in 2019, the prototype of the product Beta was developed by Theta. The

basis of this interview covers the period during the transition of the product from the

prototype development stage to the mass production process. Theta has worked to

develop and produce Beta during this transition period with its design, testing,

manufacturing, purchasing, quality, and product development teams. Different

stakeholder management was crucial for a project's success. At the same time, this

process overlapped with a period when Theta grew uncontrollably.

Figure 14 Timeline of Project #1

As a result, Theta needed help managing quality control, configuration, design, and

system development processes despite its ERP and quality management systems. The

project schedule was well-planned for both the production and the R&D processes.

After consecutive wrong decisions, the product Beta faced the risk of being scrapped.

In addition, decisions to be made now had to consider calendar pressure and the risk

of delayed delivery of systems A-B.

6.1.1.1. Findings

Figure 15 TDVM of Project #1

The larger version of the

Figure 15 is given below in three parts.

The development and production timeline of Beta is represented in above figure.

Theta worked and gained domain-specific experience with the customer from the

early stages of the project.

51

As a summary, the table indicates that the problems listed below occurred due to not

reflecting the experiences gained in the prototyping stage to mass production.

Moreover, the risks noticed at the prototype stage are not managed.

Figure 16 TDVM of Project #1.1

Figure 16 shows that there are five decisions why technical debts occurred. These

are:

 Starting the production of Beta before the development of infrastructures

(TD-1),

 Failure to initiate the design and manufacture of the infrastructure required

for the production of Beta (TD-2),

 Using prototype production methods and infrastructures for mass production

rather than standard production methods and infrastructures (TD-3),

 Placing and operating an alternative test method without validation of the

techniques(TD- 4),

 Implementing non-standard rework method without customer approval (TD-

5).

Figure 17 TDVM of Project #1.2

52

After the implementation was completed, the required measurements were made to

look at the mechanic tolerances according to the document. It turned out that the

Beta did not meet the required tolerances and was unsuitable for the next stage. This

decision is expressed in box 12 when TD 1, 2, and 3 occur. As a solution, the PM of

Theta alternatively decided to produce a second product that was identical to the first

one. Although there was a problem with the first product, the decision to start a

second production with the same test infrastructure caused TD-4. The effects of TD-

1.1 and TD 1.2, 2.1, 3.1 in different categories are given below:

Table 9 Effects of TD-1.1

Category Effects of TD-1.1:

Quality The quality personnel identified and improved the problems in the

prototyping to production, and production processes.

 Additional quality analysis and measurement effort are required to

reveal the current status of the Beta, including high-budget testing

methods like ultrasonic measurement.

Hardware

 The hardware team performed re-work and re-design to recover the

incorrectly processed product.

Reputation

 Theta’s reputation was poorly affected.

 Additional features are offered to the customer without any charge.

Cost Cost of additional R&D activities to fix the problem such as

 - Development life cyle was repeated to fix the problem,

 - Labor cost of senior personnel attending recurring meetings and

 activities for finding a solution to the possibility of scrap.

 Cost of stopping the production line of Beta for two months during

the rework process.

Production The production line was stopped for 2 months.

 The overall production schedule of the Theta was shifted because

Beta’s

production line was used to produce different kinds of products.

Category Effects of TD 1.2, 2.1, 3.1:

Quality

 Efford required to design a procedure to be followed during the

disassembly of the product Beta,

 FAI(First article inspectation) process has been executed,

 A document describing the quality management plan for the

disassembly process was prepared.

Hardware

 Requirement specification process for Beta repeated.

 Preperation of a detailed rework document and process.

Schedule

 The time to disassemble the product Beta was scheduled to be twice

the production time.

Cost The disassembly process was an extra step and cost more than the

product assembly of Beta as it required delicate artistry.

Production Production teams had to separate all raw materials and units of Beta

to start the rework process. Rework had a severe negative impact on

the morale of the team.

53

Figure 18 TDVM of Project #1.3

Theta tried to rework the product using a non-standard method. However, the

customer disapproved of the method without validation. The decision represented in

Figure 18 in box 19 made technical debt 5. Many additional tests and analyzes were

required after the client requested verification of the method. The rejection of this

non-standard method triggered Theta to notice that they were experiencing technical

debt 5.

Table 10 Effects of TD-2.2, 1.2, 2.3, 3.2, 5:

Category Effects of TD-2.2:

Quality

 The effort to find the defect in the production of the Beta process

that scrapes the product,

Customer

 Customer loss confidence in Beta’s overall product quality,

 The customer brought up a penalty for scrapping the product,

Cost

 Total production effort including the cost of holding the production

line for non-value-added operation,

 Raw materials required fort the production of Beta

 Raw materials had to be procured from stock with increased price,

Supply

Chain
 The effort required for bidding and material procurement for raw

materials again,

Production The production line was used for 4 months,

 Planned resources for beta production annihilated.

Category Effects of TD 1.2, 2.3, 3.2:

Reputation

 The reputation was harshly affected when the customer, who had

already lost months, learned of another rework operation that would

take two months,

Hardware

 Requirement specification process for Beta repeated,

 Preparation of a detailed rework document and process,

Schedule

 Delivery of product Beta postponed for two months,

 A-B system level tests delayed for three months

54

 Table 10 (cont’d)

Supply

Chain
 During the rework operation, many materials were scrapped, which

must be resupplied,

 The new method required a rapid supply of new materials, which

increased both the workload and the prices,

Cost The total cost of rework operations, including quality, design, and

production process, and an hourly personnel wage,

 The total cost of rework operations,

Production Production line reserved additional two months for the rework

operations of Beta,

 Due to both the use of infrastructure and the use of qualified

personnel, different production operations could not be scheduled.

Category Effects of TD 5:

Quality

 Visual inspection was sufficient before the operation was applied to

the product. However, after its implementation, a detailed computer

model was required. That result was the result of the quality

needing approval from the customer,

 Efforts were made to re-evaluate all quality processes.

Hardware

 Hardware designers' effort were required for the design of the

verification and validation model of Beta,

Schedule

 Model design, validation test, and analyses with customer take extra

4 weeks,

Cost Cost of extra analysis and validation test for nonstandard operation,

 Design cost of reworked hardware computer model,

Reputation There was chaos for the customer. While the quality approach is

critical, the company has yet to make a non-standard application.

The removal of the Theta from the status of the subcontractor was

evaluated from customer,

 Customer lost time and money on regular meetings.

6.1.2. Background of Project #2

Table 11 Background information of Project#2

Case Subject: Design team leader with 15+ of experience (Abbreviated as

Gamma)

Company: Company named as CA

Role: Hardware and software team leader

Interview Duration: 63 minutes

Product / Sub-

System:

Electronic sub unit B (Abbreviated as product Nu)

55

CA has been a technology leader in the defense industry sector for many years. Most

of the company comprises R&D personnel with master's and doctorate degrees. Most

of the projects focus on developing and acquiring new technologies. CA manages

everything from raw material procurement to the operational execution of the

system. The systems produced by the company require integrating the designs of

professionals from many fields of expertise. Implementing these different interfaces

and their successful operation drives many technical debts in the development and

production processes. Moreover, the market requires increased delivery time and

completion of challenging specifications.

Gamma has been working as a designer since 2004. Gamma started his career as a

hardware designer. Due to the complex system structure and working domain, it was

also necessary to manage and coordinate the teams in the software field. Gamma was

one of the operational staffs involved in the company's technological revolution. This

experience gave him the experience and knowledge required to develop complex

system structures. During the 63- minute Interview, CE reveals the acute effects of

not managing technical debt from the perspective of the supply chain department.

Figure 19 Timeline of Project #2

Despite years of experience and acquired technology, innovation management still

requires managing technical debt. The interview covers the period during the R&D

and production of Nu. Gamma draws attention to the point that Nu's product

development and mass production process are intertwined. Furthermore, the product

had to be withdrawn from the customer to analyze the reason behind the

malfunctions realized after the successful compilation of verification and validation.

The fact that the production and development environments of the system are

different shows that the technical debt has turned into an active factor that can cause

the product to be recalled.

56

6.1.2.1. Findings of Project #2

Figure 20 TDVM of Project #2

The larger version of

Figure 20 is given below in two parts.

The prototype life cycle, which started with the processor design of Nu, continued

with the implementation of the product to the Nu level. Thus, the product was

produced as a prototype and met all requirements.

As stated in box four in Figure 20, it was noticed that all product tests were carried

out in the production environment. Validation tests were done, assuming all other

interfaces were simulated in the test infrastructure and working correctly. That

decision was due to the client's failure to plan the resources for system-level testing.

Figure 21 TDVM of Project #2.1

Since Nu’s test required Sub-System A-B, it had to be scheduled before.

Nevertheless, since system-level verification was not done in a production

environment, this resulted in the first technical debt. The assumption that the product

would work efficiently in real life posed a severe risk that had to be managed. As

expected, Nu failed during the system integration test. Box 6 in Figure 21 shows the

first moment CA realized it was living with technical debt. This caused the product

to be recalled. TD1 effects represented at

Figure 21:

57

Table 12 Effects of TD-1.1

Category Effects of TD-1.1:

Hardware

 The design team had to consider all possible effects, which

required considerable effort. If testing could be done on the Sub-

System A-B level, assumptions would not be necessary. However,

as this is no longer possible in the current situation, they had to

consider every scenario and take precautions.

Reputation

 The product's failure affected the planning of upper-level

system tests. This position damaged the customer's view of the

company.

Cost

 R&D labor expenses,

 Additional testing and development activities did not plan at

the beginning of the project,

 Logistics budget spent on product recall

Schedule

 Three weeks Nu delivery delay

 Sub System A-B system delivery schedule was delayed by

two weeks.

Figure 22 TDVM of Project #2.2

After weeks of R&D work, the design teams took protection against any possible

scenarios. This approach generated many unnecessary functions to be integrated into

Nu. The product was first verified as a prototype, then transferred to production and

reworked. Passing all tests, the Nu was retested at the Sub System A-B level. The

effort expended at this stage was a continuation of the effects of TD-1, as shown in

Figure 22. The effects of TD-1.2 are represented in

.

58

Table 13 Effects of TD-1.2

Category Effects of TD-1.2:

Hardware

 The effort required for rework and verification activities on

both the prototype and the final product

Production

 Production plans were disrupted because an unexpected

rework came.

 Products still in production have been stopped, and their

delivery schedule has been affected.

Cost

 R&D developer and designer expenses,

 Production labor expenses,

 Cost of delayed Project because of production lane

stoppage

Schedule

 System delivery schedule delayed by three weeks

 Sub System A-B system delivery schedule was delayed by

two weeks.

Although the product occasionally malfunctioned, this time, it did its job with a soft

reset without turning itself off. Overall system performance and requirements have

been achieved this time. However, this solution only partially solved the problem.

Because the answer to the question of if the product does not work one day despite a

soft reset could not be given clearly, that question counted as TD 2 to the system.

Technical debt two is a version currently living in the design and has yet to appear.

6.1.3. Background of Project #3

Table 14 Background information of Project#3

Case Subject: 10+ years of Project management experience (Abbreviated

as Tau)

Company: Company named as CA

Role: Project Manager

Interview Duration: 33 minutes

Product / Sub-

System:

Core A of Sub-System A-B (Abbreviated as product

Omicron)

The 3rd case subject describes the process of outsourcing one of the main

components of subsystem A-B under CA’s management. Although the company in

question has served in the market for many years, it has just entered the sector that

Omicron needs. It was desired both to contribute to developing a new company and

benefit from the price advantage.

Subcontracting choice created a risk for Omicron, which began from the

development stage and continued during mass production. Omicron, where more

than 20 experienced engineers are actively working, was designed and mass-

produced with the joint work of two companies.

59

Figure 23 Timeline of Project #3

Tau's interview provided a perfect example of how significant the impact of technical

debt can be if not managed in complex projects. Because the technical debt taken in

one of the sub-system sub-components caused all system integration activities to be

repeated at the highest level.

6.1.3.1. Findings of Project #3

Figure 24 TDVM of Project #3

The larger version of the Figure 24 is given below in three parts.

As seen in the Figure 24, the process started with the decision of which subcontractor

would launch the design and production of Omicron.

Project management chose the new company alternative because of the factory's

mission and the price advantage. This position caused technical debt 1 to occur,

which would cause CA to lose the advantage of domain-specific experience. At the

same time, the fact that the alternative company will experience the operation and

process for the first time was another factor in creating technical debt 1.

Figure 25 TDVM of Project #3.1

60

An experienced staff had to be appointed to manage the process to minimize the risk.

However, the company has appointed a product owner who caused many problems

in product lifecycle management. Moreover, despite the increased conflicts between

the two companies, CA did not replace the product owner, which caused technical

debt 2. An experienced individual had to be appointed to manage the Omicron

process before more problems arose. The subcontractor, who already has no field

experience, had a complicated design process with noneffective guidance from CA.

Still, unit-level tests were completed, and the Omicron was shipped to the factory for

sub-system A-B integration.

Because of the structural complexity of Sub-System A-B, installation and

transportation were very difficult. Considering that Omicron was working, the

system integration was completed, and the system was transferred to the A-B test

area. Nevertheless, in the first test scenario, Omicron failed. Moreover, this error

caused damage to the entire system. Transportation was re-arranged, and the system

was disassembled for troubleshooting. CA came under extreme pressure when the

customer learned that the system had been damaged. The effects of TD-1.1, TD-1.2

represented in the Table 15:

Figure 26 TDVM of Project #3.2

Table 15 Effects of TD-1.1,1.2

Category Effects of TD-1.1:

Reputation

 The customer learned that the system was malfunctioning and

would be delayed. This postponement caused a loss of confidence

in the customer.

Cost

 The penalty was applied with the conditions mentioned in the

contract.

 The integration and transportation cost of the system is repaid.

Schedule

 The system delivery schedule has been postponed by two weeks

61

 Table 15 (cont’d)

Category Effects of TD-1.2:

Hardware

 Efford of a design team is required to understand the reason behind

the malfunction at the system level.

Production

 Production line stopped by three weeks.

 Resources have been allocated for system-level rework in

production.

Quality

 System-level quality assurance failed. An audit of quality processes

was initiated for the company's processes, related to system

verification and validation.

Schedule Rework shifted the system schedule by three weeks.

Cost Cost of quality, hardware, production, and upper management

personnel person-hour expenses.

 The project penalty continued to be applied until the system was

delivered.

Figure 27 TDVM of Project #3.3

After studying the cause and effect behind the problem, corrective actions were

initiated by Omicron. Problem-solving period caused the CA to waste many valuable

resources, including the top management personnel. Problem-solving period wasted

valuable resources, including the effort of top management personnel.

 Inaccurate management of R&D to the production process,

 The inability to establish a bridge between the manufacturer and the design

team,

 The selection of a subcontractor who is not an expert in the field caused the

system delivery schedule to be postponed and wasted resources.

caused the system delivery schedule to be postponed and wasted resources.

The effects of TD-1.3, TD-2.1 and TD-1.4, TD-2.2 represented in the Table 16:

62

Table 16 Effects of TD-1.3, 2.1, 1.4, 2.2

Category Effects of TD-1.3, TD-2.1:

Hardware

 The experience that the subcontractor should have was lacking in

the manufacturer in this scenario. Closing this gap required

additional person-hours from the hardware team.

Production

 The production line stopped for another three weeks

Quality

 The quality control process of the Subcontractor turned out to need

to be improved.

Schedule Brainstorming to find the cause of the problem shifted the system

schedule by three weeks.

Cost Cost of quality, hardware, production, and upper management

personnel person-hour expenses.

 The project penalty continued to be applied until the system was

delivered.

Reputation The customer was still awaiting a solution to the system's

functionality problems.

Category Effects of TD-1.4, TD-2.2:

Schedule

 The production line was reserved for four weeks, which affected the

production schedule of other project teams.

Production

 System-level disassembly and integration with the newly requested

changes have been completed.

Cost Cost of quality, production personnel person-hour expenses.

 The project penalty continued to be applied until the system was

delivered.

 Cost of transportation and the integration of the system to the field.

Reputation This time until the system was reworked was a serious negative

factor for the customer.

6.1.4. Background of Project #4

Table 17 Background information of Project#4

Case Subject: 10+ years of engineering domain experience (Named as

subject CD)

Company: Company named as CA

Role: Design Team Leader

Interview Duration: 52minutes

Product / Sub-

System:

Core A (Named as product PD)

63

Case subject CD has been a senior engineer for CA since 2010. Recently, he

experiences actively involved in the development of critical system projects. CD

started as a designer and successfully took part in many different subsystems and

system deliveries of the company. Lately, he had the opportunity to work in different

hardware design fields as a team manager. CD managed and coordinated over 50

people from 6 different departments throughout Core product A's development and

production process. This 52-minute Interview presents the TD’s and their effects

during the development and production lifecycleof product PD.

Figure 28 Timeline of Project #4

Figure 28 shows that the Core A interview starts with a critical design decision that

would affect the system architecture. Selected design alternative directly influences

the operations of the Supply Chain, Production, Quality, Design, and Software

departments. CA's business domain, history, mission, and vision were shared in the

background of Case project #1.

The team leader's failure to take action despite being warned about the supply of

products led to TD being paid with a redesign effort. These decisions also caused the

prototype and production stages to be intertwined repeatedly. Project #4 proves how

important technical debt management is in hardware development.

6.1.4.1. Findings of Project #4

Figure 29 TDVM of Project #4

64

The larger version of the Figure 29 is given below in two parts.

Project #4 starts with a critical design strategy decision. The design team decided on

the architectural solution strategy described in decision box one. The new design

requires extra effort but creates an opportunity to use both chipset solutions. If the

designer had not chosen a form-fit architecture, this would have created a technical

debt. However, CD chose to eliminate this technical debt without creating it. After

the backplane verification and validation process represented in box two designer

chose a new chipset solution.

The supply chain department informed the designer that the current chip is difficult

to obtain and cannot be repurchased in the short term. However, the designer

continued with the existing chipset, which led to the creation of technical debt 1. As

explained in box 4 in Figure 29, the design strategy also had to consider verification

and validation tests. CD realized that they only planned these test scenarios for one

option because of the budget and schedule constraints.

Figure 30 TDVM of Project #4.1

Procurement of the old chipsets meant reexperiencing the product development

cycle. Most importantly, CA had to operate the system with two different

configurations during the system's lifespan. Effects of TD 1.1(represented in box 9),

1.2(represented in box 10), and 1.3(described in box 11) are shown in the.

65

Table 18 Effects of TD-1.3,2.1

Category Effects of TD-1.3, TD-2.1:

Quality

 Quality personnel effort is required for sub-unit level validation and

verification studies

 Preparation of documentation and procedure for a quality control

process of the new design

Hardware

 Hardware design team effort is required for old chipset design.

 Preparation of documentation and production wbs for new design

Cost

 R&D, quality, and supply chain personnel expenses

Supply Chain The effort required for the supply of changing products

Schedule System delivery schedule shifted three weeks for hardware design

and verification

Figure 31 TDVM of Project #4.2

As stated in boxes 13, 14, and 15, highly costly and lengthy tests were planned for

only one option at the planning stage of project #4. The relevant chipset was verified

on another system. It was decided to submit this report instead of repeating the test.

As stated in box 16, environmental condition tests were not product-specific, and two

different configurations in the system architecture created technical debt 2. Problems

arising from Core A in the system would have to be managed separately for two

different configurations. The effects of TD-1.3,2.1 represented in Table 19 and the

effects of TD-1.2 represented in Table 20.

66

Table 19 Effects of TD-1.3,2.1

Category Effects of TD-1.2

Quality

 Efford is required to conduct an audit of the company.

Cost

 Supply chain and quality personnel expenses

 Travel expenses of quality personnel

 The chipset was purchased at a high price for the supply of the

product in a short time

Supply Chain

 The effort required for the supply of changing products

Schedule System delivery schedule shifted four weeks for chipset supply

Table 20 Effects of TD-1.2

Category Effects of TD-1.2

Quality

 Configuration management now had to be done for two products.

 All quality checks and qualifications had to be done with both

products.

Hardware

 Hardware analyzes and simulations were conducted to determine

whether the two designs of the products work form-fit in the system

efficiently.

Production

 The production line stopped for the production of the new

configuration for three weeks

Supply Chain The supply chain must find suppliers for two alternative products

during the system's lifecycle

Schedule The system delivery schedule shifted two weeks for acceptance

meetings of the new configuration

Cost R&D, quality, and supply chain, production personnel expenses

 Product verification and development costs refunded

Reputation The customer initially disapproved of a configuration change not

presented in the project's initiation phase.

6.1.5. Background of Project #5

Table 21 Background information of Project#5

Case Subject: 13 years of engineering domain experience (Named as

subject CE)

Company: Company named as CA

Role: Supply chain manager

Interview Duration: 47 minutes

Product / Sub-

System:

Core A (Named as product PE)

67

CD's career started as a production planner who had found a chance to manage and

coordinate system-level production plans. He has had the opportunity to work in the

supply chain department as a manager. Working in CA since 2009, CD currently

manages a team of 11 people. However, since this team is responsible for the supply

of the entire factory, it interfaces with many different teams and departments. During

the 52-minute Interview, CE reveals the acute effects of not managing technical debt

from the perspective of the supply chain department.

The participants of our research study prioritized planning and procurement as the

most problematic issue in the last five years in critical system development. This

interview is essential as it approaches the TD topic from the perspective of a supply

chain and production planning professional.

Figure 32 Timeline of Project #5

The project team experienced frequent oscillations between prototype and production

processes starting from the system design phase. These transitions, which are

expected in the system development lifecycle, become very difficult to manage with

the start of mass production. While mass production expects clear documents and

procedures, system development requires experiments, prototypes, and updates from

the outputs of that studies.

As CE stated, the effective management of the project schedule becomes risky when

faced with problems in subcontractor management and change decisions from the

system architecture simultaneously. Moreover, in this scenario, it is decided to move

forward with a supplier that cannot handle the job. System delivery is at risk when

this limited-capacity supplier cannot respond to additional system-level requests.

6.1.5.1. Findings of Project #5

Figure 33 TDVM of Project #5

68

The larger version of the Figure 33 is given below in two parts.

Bill of material is critical in accurately detecting and monitoring milestones during

the development and production phases of the system. As stated in the first three

boxes, Project 5 started before transferring the bill of material to the ERP due to the

tight delivery schedule and the intertwining of production and development

processes. The decision to initiate the production assumed that the BOM would not

change. However, the fact that the system structure was complex kept the possibility

of change quite significant.

Figure 34 TDVM of Project #5.1

The proposal for the change caused the first technical debt to be created. The risk

could have caused a loss in the effort to transfer the methods and technology to the

selected supplier. BOM change also required an increased number of raw materials

and subunits. The expected production capacity had nearly doubled with this change.

The effects of this change are represented in Figure 34:

Table 22 Effects of TD-1

Category Effects of TD-1

Quality

.

 Efford required for all quality checks and qualifications

Hardware

 Hardware analyzes and simulations were conducted to

determine an alternative for the sytem due to materials with

long lead times.

Production

 The production line stopped for the rework process

Supply Chain Efford required for the bidding process.

Schedule The system delivery schedule shifted two weeks fort he supply

of new materials

Cost R&D, quality, and supply chain, production, hardware

personnel expenses

 Cost of scrapped raw materials

 Cost of production stoppage

Reputation The customer realized that system delivery schedule delayed

due to the rework.

69

Increasing needs in system BOM required answering two questions. Would the CA

continue with the same supplier, and would this supplier be able to meet its

production capacity? The decision to continue with the same supplier created

technical debt 2. Because the supplier could not produce the expected amount, it was

expected to increase its capacity by two times. However, the CA continued with the

same supplier to save time during technology and method transfer again. However,

this decision depended on the supplier's ability to achieve the required increased

capacity.

Figure 35 TDVM of Project #5.2

The expected risk was realized, and the supplier needed help to deliver the requested

capacity increase. Late-delivered products postponed the systems delivery schedule.

The effects of technical debt 2.1 and 2.2 are represented in the and Table 24.

Table 23 Effects of TD-2.1

Category Effects of TD-2.1

Production

 Production resources could have been planned more effectively

because the allocated resources could be used for different

production lines.

Schedule

 System delivery schedule was delayed two weeks.

Cost

 The production line stopped for two additional weeks.

Reputation The customer had to wait extra time for the rework.

Table 24 Effects of TD-2.2

Category Effects of TD-2.2

Schedule

 With the current capacity, three-week delay in the system delivery

is expected.

Cost

 The project was penalized for delay.

Reputation

 It was understood that there was no chance that the production

goals could not be achieved with the current supplier.

70

6.1.6. Background of Project #6

Table 25 Background information of Project#6

Case Subject: 17 years of project manager experience (Named as

subject CF)

Company: Company named as CA

Role: Project Manager

Interview Duration: 84 minutes

Product / Sub-

System:

Electronic Sub Unit B (Named as product PE)

CF had a broad range of experience in different domains, which include design,

system, and project management. That career path provided an opportunity to

experience and manage each cycle of product and system development. Today CF

manages a project team of 80+ people. He is a critical actor in the project

management activities of CA. During the 84 minutes interview, CF explained that

indicating mass production for a high-tech product requires managing risks and TD.

Figure 36 Timeline of Project #6

Project #6 differs from other projects with the repetitive transitions between the

system's production and the prototype's development. System development

processes are represented in Figure 36 Timeline of Project #6. During Project #6, TD

decisions result in the recall of the systems from the customer.

6.1.6.1. Findings of Project #6

Figure 37 TDVM of Project #6

The larger version of the Figure 37 is given below in three parts.

Project 68 timeline, represented in Figure 37, started with the production of PE.

Complex system development requires the integration of sub-units with various

interfaces with other sub-systems. Sub-System B is one of the system's central parts,

and the architects and managers had to control and consider the effect of other

71

modules and the factors. That requires excellent communication and sharing of

knowledge between the project stakeholders. In order to provide a system and unit-

level tests, designers had to consider constraints coming from the other interfaces

and the sub-systems.

The question in box 2 in Figure 37. tries to find an answer if the test procedure

covers all the requirements and factors. The nature of complexity comes with

unexpected and unpredictable risks for the system developers. However, the project

team chose to complete a partial test procedure for the PE, although they were aware

of the possibility of additional risks, which created TD1, represented in Figure 37,

box 3. The real reason behind that decision was that the validation studies still

needed to be completed when the system integration phase proceeded to the test

level. The production team also decided to move to the next iteration without the

result of rigorous testing studies because of the project's tight schedule. That was the

reason behind TD2, shown in Figure 37, box 6. The design team initiated rigorous

testing with the prototype simultaneously with the system integration. The system

integration was completed, and the system-level test started with the modules and

sub-units. Rigorous studies continued while the system tests began. As a result:

TD1 born, accepting the system test procedure without being aware of the

environmental factor effects,

TD2 was created with the advancing integration at the sub-unit level without waiting

for the rigorous tests to complete,

TD3 was born from advancing system-level integration without waiting for rigorous

tests to complete.

Figure 38 TDVM of Project #6.1

Due to unknown factors system was shipped to the customer. The problems can be

summarized under two significant categories: partially implemented tests and the

probability of occurrence of environmental factors. That risk may even result in the

system's recall from the customer.

72

Figure 39 TDVM of Project #6.2

After the system’s integration with the customer, PE meets the expectations and

requirements. While the system was operating, the customer realized that the

system's overall performance started to decrease over time. That was the occurrence

of TD1. The system team created a temporary solution by manually turning off the

malfunctioned PEs. The effects of TD1 are represented in the Table 26:

Table 26 Effects of TD-1.1

Category Effects of TD-1.1

Quality

 Customers' reputation in the overall quality of the product was

damaged. It was examined why the problems that cause reliability

and performance loss were not examined in the tests before the

shipment of the system.

Hardware

 Efford was required to design a controller for malfunctioning units

without requiring manual operations.

Cost Cost of quality, hardware and production personnel expenses.

 Cost of implementing the change request at the operation side.

Reputation The system could not perform its requirements effectively. The

customer expects a solution for a system immediately required from

the operators.

In the meantime, the rigorous tests showed a need for a significant change at the PE

level. Also, it was understood that the health of the system architecture would be

affected negatively if the requested change was implemented after some time. Cause

and effect analysis shows the test procedure had to be prepared in more detail, and

the requirements' coverage has to be broader. The occurrence of TD2 and TD3 was

revealed with the request for a new test procedure. It was also understood that the

system had to be recalled for modifications and re-tests.

The system was mission-critical for the customer. The status of the project made the

recall decision hard to operate. Also, that would result in the enormous risk of losing

the customer's reputation. To solve the issue and create a short time, the system team

initiated a software update that controls the effects of the PEs at the system level.

73

With that update, the system would continue its operations, but the efficiency would

decrease stochastically over time. That was the first effect of TD1.2, TD2, and TD3,

shown in Figure 39, box 17. As expected, the project management decided that the

system had to be recalled due to the loss of performance, represented in Figure 39,

box 20. Table 27 shows the effects of TD1.2, 2, and 3:

Figure 40 TDVM of Project #6.3

Table 27 Effects of TD-1.2, 2, 3

Category Effects of TD-1.2, 2.3

Quality

 The quality personnel investigated each operation to be sure to

perform everything successfully. Due to the schedule and budget

pressure, there were no options for another rework.

Hardware

 The hardware design team prepared a detailed documentation for

the disassembly of the system.

Cost

 R&D, quality, and supply chain, production, hardware personnel

expenses

 Cost of scrapped raw materials

 Cost of production stoppage

 Cost of penalty

Supply Chain Bidding studies were made to supply materials added to the change

request and scrapped units.

Schedule System delivery schedule delayed 2 months for rework.

Reputation The project was penalized for delay.

Production Production capacity plans were affected negatively by the new

rework expectation.

 The fact that a completed job would be back to the starting point

damaged the morale of the production personnel.

The primary source of the problem had to be identified and solved at the unit level,

but the design and test team still needed to update the unit-level test procedure. That

failure in planning the test at the unit level created TD-4. The rework was initiated,

and the change request was completed at the product PE level. All units passed the

tests, which did not include the operations required to verify the change. System

integration started again, and at the system tests, some of the performance of the sub-

74

units could have provided the expected results. Faulty products were disassembled

and reworked again. Since there was no infrastructure at the unit level, verifications

of the PEs had to continue at the system level. Each product must be transferred to a

new location and integrated into the system to initiate unit tests. Effects of TD-4

represented in the table:

Table 28 Effects of TD-4

Category Effects of TD - 4

Quality

 Each quality control operation is repeated for every product

reworked.

Hardware

 The design team had to be involved in the testing process because

the defined scope at the unit level does not present the system's

needs. They had to modify tests case by case because an automatic

software update required massive time and effort, which the project

did not have.

Cost

 R&D, quality, and supply chain, production, hardware personnel

expenses

 Cost of scrapped raw materials

 Cost of production stoppage

 Cost of penalty

Supply Chain Bidding studies continued for the supply of the needs of reworked

units.

Production Production capacity plans were affected negatively by the re-test

and rework operations.

 Due to faulty design decisions, challenging targets were imposed on

the production personnel.

Schedule The system delivery schedule was delayed two months for re-test

processes.

Reputation The project was penalized for delay.

 The customer's reputation against the product was negatively

affected because of the 4-month reworked process.

After completing the new test procedure and change request, the system was ready.

Still, the project team needed to provide operation and environmental conditions for

the system test procedure. These requirements come from the company's past

experiences rather than the customer's agreement. The project team recalled the

system, and the delivery was delayed. In light of these conditions, the company

decided to design a prototype and conduct these tests in parallel. The system was

shipped to the customer. With that decision, the TD5 shown in Figure 40. in box four

was born. TD-5 was critical as an indication that technical debts still need to be

managed and monitored even if the system is delivered.

75

6.1.7. Background of Project #7

Table 29 Background information of Project#7

Case Subject: 21 years of system manager experience (Named as subject

CG)

Company: Company named as CA

Role: System Manager

Interview Duration: 56 minutes

Product / Sub-

System:

Electronic Sub Unit A (Named as product PF)

Project #7 reveals the importance of the management of TDs when more than one

system is integrated and produced simultaneously. According to CG, the effects of

TD decisions at any phase of the development cycle increased proportionally with

the number of integrated systems. CG has tremendous system management

background, which has been experienced in CA for more than 20 years. The

challenge of project #7 comes from the increased size of the teams and the system

itself. A change request discovered in the project's later phases may require massive

cost and time to complete. Since CA's two most extensive product lines are reserved

for developing project #7's systems, any problem resulting in the production line

stoppage would not be accepted.

Figure 41 Timeline of project #7

The first swimlane in Figure 41. represents the timeline of system one, while the

second lane represents the other. During the R&D and production phases, there were

decisions taken for the management of TD. The result of that decisions affects both

systems' resource and project plans. The company has to resolve the issues and

initiate the rework process for both, which brings increased effort for the project

team. During the 56 minutes interview, it was stated that decisions taken to eliminate

risks became the actual threats behind the delay of the system's schedule.

76

6.1.7.1. Findings of Project #7

Figure 42 TDVM of Project #7

The timeline represented in Figure 42. started in early 2019. After the production of

the prototype electronic sub unit A, raw material supply and mass production have

been created without waiting for the completion of the verification and validation

phases. That was the reason behind the creation of TD-1.

It was stated that while the start of the production decision was taken, the design

team discovered a problem with the prototype, which did not share with the project

team. Communication of that information may even prevent technical debt, but the

design team chooses to postpone the studies to find the solution.

Figure 43 TDVM of Project #7.1

77

They should have realized the importance of the malfunction and the postponement

of the solution decision that created TD-2, with the alternative partial testing method

developed by the design team system verified and moved to integration.

Figure 44 TDVM of Project #7.2

Verification of the first system initiated the production of second systems units. In

the meantime, the development team discovered the reason behind the malfunction

and developed a solution that did not require hardware changes.

Software updates are usually a better alternative for system developers because

hardware changes may require a supply of the materials with production personnel

effort. The choice alternative, which did not require a hardware change, was created

TD3 because the software solution was needed to solve the problem.

System-level tests were initiated for the first system, and unexpected behaviour of

components was detected. That was the occurrence of TD-1. The system was

disassembled to analyze the behaviour and find the reason behind the malfunction.

Second systems integration required sub-product A to continue, resulting from a

stoppage in production. The design team stated that hardware and software changes

should be applied together. That discovery was the occurrence of TD-2. The effects

of TD-1.1,1.2, 2.1 and 2.2 are represented in the Table 30:

78

Table 30 Effects of TD-1.1,1.2, 2.1,2.2

Category TD-1.1, 1.2

Schedule

 First system delivery delayed for 3 months.

Cost

 The first system production line stopped for three months.

 R&D, quality, supply chain, production and hardware personnel

expenses

Production The stoppage of 2 production lines consumed the capacity plans of

the company.

 Efford is required for the disassembly of the system.

Hardware The hardware design team prepared a detailed documentation for

the disassembly of the system.

 Efford is required to conduct cause and effect analysis.

Quality Efford is required for the preparation of the quality control

procedures.

Category TD-1.2, 2.2

Schedule

 The project's delivery plan depends on the second production line

was delayed for three months.

Cost

 The second system production line stopped for three months.

 Cost of supply chain and production personnel expenses.

Supply Chain Bidding studies were made to supply materials (software licenses)

added to the change request.

To initiate a change request, required materials had to supply immediately. Supply of

the materials for change requests brings considerable effort to the supply chain team.

The details about the process represented in the extra lane are presented in Figure 44.

Sourcing raw materials initiated the rework process for the change request linked to

electronic sub-unit A's malfunction. Technical Debt 4 was created because of the

partial test implementation decision. Since the schedule of the system integration was

delayed with the change request, the project team has to find a way to provide a

solution for catching up with the project delivery plan. Test coverage changed with a

limited procedure to achieve the system delivery goal.

79

Figure 45 TDVM of Project #7.3

The effects of TD-3 are represented in Table 31 Effects of TD-3.1:

Table 31 Effects of TD-3.1

Category TD-1.1, 1.2

Schedule

 The project's delivery plan depends on the second production line

was delayed for three months.

 First system delivery schedule was delayed for three months.

Cost

 The second system production line stopped for three months.

 The first system production line stopped for three months.

 Cost of supply chain personnel expenses.

 Cost of scrapped materials.

Supply Chain Bidding studies were made to supply materials (software licenses)

added to the change request.

80

6.1.8. Background of Project #8

Table 32 Background information of Project #8

Case Subject: 7 years of project manager experience (Named as subject

CH)

Company: Company named as CA

Role: System Manager

Interview Duration: 93 minutes

Product / Sub-

System:

Sub System A Core (Named as product PI)

Unlike other interviewers, PI's professional life started in a different company. After

three years of supply and chain experience in the automotive industry, he transferred

to the CA as a project engineer. The experience of coming from an industry that does

not serve space and defense was essential because a broad perspective could create

effective results for answering the thesis research questions. PI worked as a project

engineer for two years on the project he talked about in the interview. His successful

decisions and actions made him attented as project manager.

Figure 46 Timeline of project #8

Project #8 in Figure 46. reveals how big an impact hardware-related technical debt

can have if not managed. Because of the unplanned hardware infrastructure, a team

prepared an alternative test method that requires both hardware and software design.

Since the development baseline did not include verification and validation for extra

infrastructure, some vital steps failed to complete. Inheritance of technical debt

created new technical debts, resulting in a chaotic system management environment

for development decisions.

81

6.1.8.1. Findings of Project #8

Figure 47 TDVM of project #8

Project #8 timeline started with the requirement specification at the system level.

With the detailed WBS structure, electronic sub-unit B requirements are determined.

The complex architecture of the system required extra tests and analysis, which the

customer could not specify because this experience comes from domain-specific

knowledge. First technical debt was created with the decision to skip some of the

design verification tests. Especially high tech developing designs required rigorous

tests, which had to be planned before because of the requirement of a high budget

and long process times.

Figure 48 TDVM of project #8.1

Information at Box 6 in Figure 48 shows that the prototype failed at customer tests.

This is the first time when company A realizes TD-1. Even so, the project

management team initiated mass production. That decision revealed TD-2 because

postponing the problem-solving means accepting any returns from the possible

change request that may come in the future. Mass production also initiated the supply

of all required materials in the bill of materials. Also, one of the reasons behind the

failure of the customer verification test was the unplanned infrastructure. With the

current infrastructure, the development team only has the option to complete some

tests and analyses. The unplanned infrastructure required extra time in the system

schedule, forcing the design team to create an alternative test method and

infrastructure. The reason behind that option was the inheritance of the TD-2. TD-3

was created because of the non-standard alternative test method and infrastructure.

The system-level production tests were completed with the alternative infrastructure

and test methods. While the mass production continued, the development team tried

to verify the new method and infrastructure. At the beginning of the project, using an

alternative was the best option from the team leader's perspective, but now it was

evident that the partial test method required massive verification and validation

efford and studies. Table 33 represents the effects of TD-1.1:

82

Table 33 Effects of TD-1.1

Category Effects of TD-1.1

Quality

.

 The effort required for quality checks and qualifications of the new

procedure

Hardware

 Hardware analyzes and simulations are needed to design the

alternative.

Schedule The design team lost three weeks for the root cause analysis

Cost Extra budget required fort he design of new model

 R&D, quality, and hardware personnel expenses

The designers realized that product passed all unit-level tests but failed at system

integration. Analysis revealed that the alternative test method covered only some of

the required verification and validation steps. The company CA faced two Technical

Debts. TD-2 occurred when the system failed at the integration, and TD-3 occurred

with the realization of the unplanned test infrastructures effect.

Figure 49 TDVM of project #8.2

The designers realized that product passed all unit-level tests but failed at system

integration. Analysis revealed that the alternative test method covered only some of

the required verification and validation steps. The company CA faced two Technical

Debts. TD-2 occurred when the system failed at the integration, and TD-3 occurred

with the realization of the unplanned test infrastructures effect.

The project team had to manage a domino effect of TDs, with the nonefficient

management of the TD system architects faced with complex decisions and

constraints which require a tremendous amount of engineering effort to understand.

In the meantime, the system's delivery schedule becomes tight, affecting system and

project managers' decisions about the integration. Produced Sub Products behave

individually and require job-shop manufacturing. They passed all the unit tests but

never worked as a system, and their interfaces were never tested with the high-level

components. However, it turns out that when the units work together, they affect

each other's performance, negatively affecting the system's nonfunctional

83

requirements. Box 26 and 27 show the decision and the occurrence of TD-4, which

can be seen in Figure 49

The effects of the TD that was detailed before are represented in the Table 34.

Figure 50 TDVM of project #8.3

Table 34 Effects of TD-1.2,2.1,3.1,2.3,2.4, 2.5,2.6,1.3,4,2.7

Category Effects of TD-1.2,2.1,3.1,2.3,2.4

Quality

.

 Efford required for material level quality control,

 The effort required for quality checks and qualifications of the new

procedure

Hardware

 An engineering study has been performed to understand the

behavior of the system. Data must be collected at the unit level that

was not stored because of the unplanned infrastructure. To identify

the exact cause behind the malfunction, hardware teams focus on

creating the problem in the development environment.

 After the implementation of the change there were unexpected

outputs and behaviors in the system. The design team conduct a

root and cause study for finding the issue behind it.

Schedule The system delivery delayed for 4 months.

Cost Costs of the scrapped materials.

 R&D, quality, supply chain, production and hardware personnel

expenses

 Production line stopped for 3 months

 Integration processes repaid for two times.

Supply Chain Efford required for the bidding process.

Production Production resources cannot be planned efficiently due to

unpredictable system integration needs.

Reputation Customer informed about the delay of the project and the major

rework at the system level result in the loss of confidence against

the system.

84

Table 34 (cont’d)

Category Effects of TD-2.5,2.6,1.3,4,2.7

Quality

 Sub-products are produced in different configurations and with

different methods due to the complexity of the change request. The

quality control process had to be studied and implemented case by

case for each unit.

Hardware

 The designers had to analyze the problem in each product and find

a solution. TDs in project #8 led them to spend all their time in

production to solve product-specific malfunctions. Moreover, each

product has a unique configuration, which requires modeling and

analyzing for validation and verification tests.

Schedule System delivery delayed for 3 more months.

Cost R&D, quality, supply chain, production and hardware personnel

expenses

 Cost of penalty due to systems delay

 Cost of developing simulation and design models

 Projects were penalized because of the delay of Project #8

Reputation The end-user was irritated with the job shop manufacturing method

instead of mass production. Furthermore, the system delivery was

delayed.

Production CA's production lines were adversely affected.

 Capacity plans had to be revised.

6.2. Qualitative analysis of the cases using Dedoose

The purpose of the analysis is to determine how practical is the current categories in

literature in identifying technical debt. The data were analyzed by considering the

age of the participants, work experience, education level, how many companies they

worked in before, how many different departments they worked in, and their areas of

expertise. The above categories were considered critical for the reliability of the

collected data.

A study was conducted with eight people. Their age range is represented in Figure

50. Years of experience in complex system development among these people can be

seen in. The analysis of the two graphs shows that most of the interviewers belong to

middle age professionals with a significant domain and work knowledge.

85

Figure 51 Participants age distribution

People with 0-5 years of experience could not be found for the interview. This result

can be presented as an example of the fact that a certain level of expertise is

considered when selecting the resources working in complex system development.

Figure 52 Distribution of participants years of experience

Companies prefer to evaluate inexperienced personnel in low-budget projects, which

usually require something other than high-tech designs and innovation. Reused

modules, software, and hardware constitute the components of the systems. This

environment is suitable for new engineers to learn and adopt the practices for future

use. The given distribution of subjects' ages and experiences is the required domain

knowledge of the participants for complex system development.

The complex systems development team consists of various people from different

backgrounds. Even teams of teams are created depending on the need and

expectations of the department. Technical debt occurs during the development and

production cycle of the system. We include supply chain, production, and other

development support departments because of their significant role throughout the

process. Figure 52. represents the roles and proficiencies of the interviewers.

0 0,5 1 1,5 2 2,5 3 3,5

Late 20s

Early 30s

Late 30s

Mid 40s

Subjects Age Set: Subject
Background, Field: Age

0 0,5 1 1,5 2 2,5 3 3,5

0-5

5-10

15-20

20-25

25-40

Subjects Years Of Experience Set: Subject Background,
Field: Years Of…

86

0 0,2 0,4 0,6 0,8 1 1,2

Design Team Leader

Production Planning

CEO

Project Manager

Product Owner

Quality Manager

Supply Chain Manager

System Manager

Subjects Proficiency
Set: Subject Background,
Field: Proficiency

Figure 53 The distribution of participants' proficiency

Figure 54 The distribution of participants' experiences - 1

0 0,5 1 1,5 2 2,5 3 3,5

1

2

3

4

How many company did the
subjects experience for?

Set: Subject
Background, Field: #…

87

0 1 2 3 4 5 6 7 8

No

Yes

Are the subjects experienced
in a single field?

Set: Subject Background,
Field: # of field

Figure 55 Distribution of participants' experiences -2

Awareness of technical debt requires a business background. There needs to be more

than the experience from problematic system development cases to manage TD. The

project or system team participant had to understand the management principles of

TD. Since there is no single standard for that operation, companies follow their

routines and approaches. The culture of the company also affected the decision

process of project teams. For this reason, Figure 55 presents the companies that the

participants have worked for.

The more experience gained in different companies, the more likely it is to encounter

a culture of technical debt and gain experience related to management experience.

Since complex system management requires broader management and integration of

different professions, experience in various fields makes managing technical debt

more effortless. Figure 55. shows that most of the interviewers had worked in more

than one field, which means that they also considered the effects of their decisions on

other departments when making technical debt determinations.

Figure 56 Distribution of participants' educational level

Last, understanding the participants' behaviour is essential to know their educational

level which represented in Figure 56. Since there is no single standard for managing

technical debt, domain experience, which usually comes from the field, is necessary.

0 0,5 1 1,5 2 2,5 3 3,5

Bachelor

Doctorate

Master

Subjects Educational Level
Set: Subject
Background, Field:…

88

A methodology to efficiently use that knowledge is more efficient with academic

guidance. The management also includes the effects, causes, monitoring, and

analysis of the TDs. Business professionals use their educational background and

experiences to shape their complex system projects TD administration. Academic

levels of participants; show an equal distribution in terms of bachelor, master, and

doctorate.

6.2.1. Findings of the qualitative study

There exist 161 technical debts in 8 participants' 10 cases which are represented in

Figure 58. That 161 TD was grouped into 17 categories that included 26

subcategories. These levels had technical debts that led to or inherited each other. An

example reports of the Dedoose interface used to determine these codes is shown in

Figure 56.

Figure 57 A sample Dedoose qualitative analysis screenshot

Our findings are shown in the matrix structure in Figure 57 below. The notation in

Figure 57 is preferred for a straightforward expression of which technical debts cause

each other and to show the related categories. As a result of this analysis, it was

revealed that technical debt categories are effective in the formation of other

technical debts and that there may be relationships at different levels between the

categories. Moreover, these relationships between categories can change positions in

other scenarios and situations. This case reveals that the causes and effects that cause

89

the occurrence of technical debt should be analyzed, monitored, and managed for

each topic individually.

Figure 58 Technical debts in categories and subcategories

Figure 59 Matrix structure of qualitative analysis

Technical debts in categories and subcategories specific to individuals are given in

Figure 59. Findings were reflected using light-to-dark colouring, depending on their

increased frequency of occurrence.

The technical debts that emerged at the end of eight interviews revealed that the

existing literature provides a basis for determining technical debt in complex system

projects. However, it also became clear that the categories needed to be studied and

reproduced for different departments and areas of expertise. In addition, it was

understood that technical debts could be inherited and managed with subcategories

Technical

Debt

A
rch

itectu
re d

eb
t

 C
o

m
p

lexity d
eb

t

 C
o

n
figu

ratio
n

 d
eb

t

 R
eq

u
irem

en
t D

eb
t

C
o

m
p

lexity d
eb

t

 C
h

an
ge D

eb
t

C
o

n
tract D

eb
t

 A
rch

itectu
ral d

eb
t

 Test d
eb

t

 P
ro

d
u

ctio
n

 d
eb

t

 In
o

vatio
n

 D
eb

t

C
u

sto
m

er D
eb

t

 A
rch

itectu
re D

eb
t

 R
eq

u
irem

en
t D

eb
t

D
esign

 D
eb

t

 B
u

ild
 D

eb
t

Exp
erien

ce D
eb

t

 In
o

vatio
n

 D
eb

t

In
frastru

ctu
re d

eb
t

 M
o

d
el D

eb
t

 R
eso

u
rce D

eb
t

In
h

eritan
ce d

eb
t

In
tegratio

n
 D

eb
t

M
an

agem
en

t D
eb

t

 M
ass P

ro
d

u
ctio

n
 D

eb
t

 P
eo

p
le d

eb
t

 P
ro

cess D
eb

t

 R
eso

u
rce D

eb
t

 Su
b

 co
n

tracto
r d

eb
t

M
an

u
factu

rab
ility an

d

Testab
ility D

eb
t

M
ass P

ro
d

u
ctio

n
 D

eb
t

P
eo

p
le D

eb
t

P
ro

cess d
eb

t

 C
o

m
m

u
n

icatio
n

 D
eb

t

Q
u

ality D
eb

t

 P
ro

cess D
eb

t

 C
o

n
tro

l an
d

 m
o

n
ito

r

d
eb

t

 R
eq

u
irem

en
t d

eb
t

Su
p

p
ly C

h
ain

 D
eb

t

 Su
b

-co
n

tracto
r d

eb
t

 Q
u

ality D
eb

t

 Su
p

p
lier d

eb
t

Test d
eb

t

To
tals

Subject8 0 0 0 0 0 0 3 0 0 0 0 1 1 1 0 0 0 0 3 1 1 0 0 2 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 15

Subject7 1 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 2 0 0 0 0 4 0 0 0 1 2 0 0 0 2 1 0 0 0 0 0 0 0 0 0 15

Subject6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 2 2 1 0 1 1 1 0 1 13

Subject5 2 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 2 2 1 0 0 1 0 2 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 1 4 20

Subject4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 1 1 0 0 0 0 0 0 0 1 0 1 1 0 0 3 3 0 1 0 14

Subject3 0 2 0 0 0 0 2 0 0 0 2 0 0 0 0 0 6 3 0 2 0 17

Subject2 3 1 2 0 0 0 6 0 0 2 1 0 0 0 1 0 2 0 1 0 0 1 0 3 0 1 0 0 1 0 0 4 1 0 2 1 0 1 0 1 0 0 1 36

Subject1 2 0 2 0 0 0 3 1 1 0 0 5 0 1 2 2 4 0 0 0 0 0 0 0 0 0 0 0 0 2 0 1 0 0 2 1 1 0 0 0 0 1 0 31

Totals 8 1 4 1 0 0 14 1 1 2 1 6 1 2 5 2 9 3 8 1 1 2 1 14 2 2 1 1 5 2 1 5 7 1 7 5 2 1 11 8 1 5 6 161

Debt Categories

A
rch

itectu
re d

eb
t

 C
o

m
p

lexity d
eb

t

 C
o

n
figu

ratio
n

 d
eb

t

 R
eq

u
irem

en
t D

eb
t

C
o

m
p

lexity d
eb

t

 C
h

an
ge D

eb
t

C
o

n
tract D

eb
t

 A
rch

itectu
ral d

eb
t

 Test d
eb

t

 P
ro

d
u

ctio
n

 d
eb

t

 In
o

vatio
n

 D
eb

t

C
u

sto
m

er D
eb

t

 A
rch

itectu
re D

eb
t

 R
eq

u
irem

en
t D

eb
t

D
esign

 D
eb

t

 B
u

ild
 D

eb
t

Exp
erien

ce D
eb

t

 In
o

vatio
n

 D
eb

t

In
frastru

ctu
re d

eb
t

 M
o

d
el D

eb
t

 R
eso

u
rce D

eb
t

In
h

eritan
ce d

eb
t

In
tegratio

n
 D

eb
t

M
an

agem
en

t D
eb

t

 M
ass P

ro
d

u
ctio

n
 D

eb
t

 P
eo

p
le d

eb
t

 P
ro

cess D
eb

t

 R
eso

u
rce D

eb
t

 Su
b

 co
n

tracto
r d

eb
t

M
an

u
factu

rab
ility an

d
 Testab

ility D
eb

t

M
ass P

ro
d

u
ctio

n
 D

eb
t

P
eo

p
le D

eb
t

P
ro

cess d
eb

t

 C
o

m
m

u
n

icatio
n

 D
eb

t

Q
u

ality D
eb

t

 P
ro

cess D
eb

t

 C
o

n
tro

l an
d

 m
o

n
ito

r d
eb

t

 R
eq

u
irem

en
t d

eb
t

Su
p

p
ly C

h
ain

 D
eb

t

 Su
b

-co
n

tracto
r d

eb
t

 Q
u

ality D
eb

t

 Su
p

p
lier d

eb
t

Test d
eb

t

Totals

Architecture debt 0 1 4 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10

 Complexity debt 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 2

 Configuration debt 4 0 1 0 5

 Requirement Debt 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3

Complexity debt 0

 Change Debt 0

Contract Debt 0 0 0 0 0 0 0 1 1 2 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 8

 Architectural debt 0 0 0 0 0 0 1 0 1

 Test debt 0 0 0 0 0 0 1 0 1

 Production debt 0 0 0 0 0 0 2 0 2

 Inovation Debt 0 0 0 0 0 0 1 0 1

Customer Debt 0 0 0 0 0 0 0 0 0 0 0 0 1 2 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 10

 Architecture Debt 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 2

 Requirement Debt 0 0 0 0 0 0 0 0 0 0 0 2 1 0 0 0 1 0 4

Design Debt 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 2

 Build Debt 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 2

Experience Debt 0 0 0 0 0 0 0 0 0 0 0 4 0 1 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 9

 Inovation Debt 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 3

Infrastructure debt 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 0 0 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 9

 Model Debt 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1

 Resource Debt 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 2

Inheritance debt 1 0 1 0 2

Integration Debt 0

Management Debt 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 2 2 1 1 5 0 1 0 0 0 0 0 0 0 0 0 0 0 0 15

 Mass Production Debt 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2

 People debt 0 2 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3

 Process Debt 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2

 Resource Debt 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2

 Sub contractor debt 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 7

Manufacturability and Testability Debt 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 2

Mass Production Debt 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

People Debt 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 2

Process debt 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 3

 Communication Debt 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 2

Quality Debt 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 5 2 1 1 2 0 0 0 13

 Process Debt 0 5 0 2 0 1 1 0 0 0 9

 Control and monitor debt 0 2 2 0 0 0 0 0 0 0 4

 Requirement debt 0 1 0 0 0 0 1 0 0 0 2

Supply Chain Debt 0 1 1 0 0 0 5 1 3 1 12

 Sub-contractor debt 0 2 1 0 1 5 0 1 2 1 13

 Quality Debt 0 1 1 0 0 1 3

 Supplier debt 0 3 2 0 0 0 5

Test debt 0 1 1 1 0 0 3

90

depending on the circumstances. The new categories found due to the multiple case

study and their explanations are detailed in Chapter 8.

6.3 Validation of the Study

Since there is no similar model in the literature to show the effects of the emergence

of technical debt, to validate the study, the results of the case study were shared with

the subject experts. These experts' feedback and evaluations were used to validate the

analysis. Validation interviews were completed with the participants whose case

studies were conducted.

First, text base scenarios, including technical debt, were shown to the participants.

Then, examples of strategies that create technical debt in projects were verbally

explained. Finally, the same scenarios were presented with the technical debt

visualization model. With this method, the participants could evaluate the model's

contribution to the literature and technical debt management.

 All the data collected from the first Interview were processed on the model,

and the technical debts were visualized. The results of these case studies were

included in the research by creating technical reports. During the valid ation

Interview, the participants were asked open-ended questions, except for the

4th and 5th question. These questions aimed to identify the obstacles in

operation and verify the model's effectiveness in visualizing technical debt.

The questions asked to the participants during the validation process are

given in the

Table 35 Validation questions

ID: Question:

1. What can be improved in the technical debt visualization model?

2. What can be done for its wide use in the company?

3. What is the most significant limitation of using the model?

4. To what extent will the stakeholders in the project benefit if the model is

used for complex system development?

5. How adequate are the proposed categories to detect technical debt in

complex projects?

6. Do you have a technical debt category suggestion for determining the

concept in complex system development?

For the validation of specifying and understanding the effects of TD in complex

system development research team used the first four questions. The scale for the 4th

question was presented to the participants. Scale categorized as:

 Strongly disagree,

 Disagree,

 Undecided,

 Agree

91

 Strongly agree,

The scale for the 5th question was presented to the participants. Scale categorized as:

Table 37 Ratings of the 4th question answers

Table 36 Ratings of the anwers to the 4th question

Participants shared that the model will be a critical tool to support them in managing

complex systems. %90 of the participants stated that they were aware of the technical

debt metaphor with the model.They also shared that technical debt is critical in

complex system development projects. They shared that as the structures get

complex, the problems become intertwined, making their management a critical

topic.

For the validation of the qualitative study research team used the last 2 interview

question. The scale for the 5th question was presented to the participants. Scale

categorized as:

Table 37 Ratings of the 5th question answers

To validate the result obtained in the second

research question, the research team used the

result of the interviews. Answers to the 5th

question in table 38 shows that the suggested

categories are promising for detecting

technical debt in complex systems. However,

this study needs to be evaluated on more cases, and categories should be developed.

In addition, it has been demonstrated by this study that risky and erroneous decisions

that are not followed over time damage the system over a long period. According to

the participants, With TDVM, such problems can be overcome, and complex

components, modules, or parts in the system can be tracked and managed effectively.

Only 1 participant stated that the model would be challenging to use in the workload

Interviewers ID: Scale

1. Strongly agree

2. Strongly agree

3. Strongly agree

4. Agree

5. Strongly agree

6. Strongly agree

7. Strongly agree

8. Strongly agree

Interviewers ID: Scale

1. Strongly agree

2. Strongly agree

3. Strongly agree

4. Strongly agree

5. Strongly agree

6. Strongly agree

7. Strongly agree

8. Strongly agree

92

in the development cycle. For this reason, he presented his opinion partially.

However, this participant stated that TDVM would play an essential role in complex

system development if this problem is overcome.

For the improvements of the model:

 All participants stated that the model should be moved to an interface via

software,

 It was suggested to include the result and solution alternatives for TDs in the

model,

 The need for a module capable of reporting the results of TDs was specified.

The most critical issue for using the model within the company was the need for a

user-friendly interface. In addition, while technical debt was considered new even in

the software world, it was revealed that all project stakeholders should be informed

about this issue. Otherwise, the model cannot be used and operated correctly. In

addition, the employees should accept the importance of managing technical debt.

Because if the project team does not consider it necessary, valuable data will be lost.

The widespread use of the model for the company was considered a subject of

imitation. It was stated that the PMO office might support the operational activities

of the model. It has been evaluated that employees can be appointed to operate the

model. Furthermore, most interviewers agree that project engineers who follow the

technical debt process during the complex system development can be assigned.

These individuals may ensure that technical debt is assessed and considered when

making decisions.

At the end of the validation interviews, the participants agreed on the positive impact

of the visualization of technical debt on the system development cycle. In addition,

since the participants are not only software developers but also different area experts

from project stakeholders, the importance of the effects of the concept of technical

debt for different system units has also been revealed.

93

CHAPTER 7

DISCUSSION AND SYNTHESIS

Austin M. Page states that technical debt is the cost of doing nothing (Austin Page et

al., 2019). The metaphor may appear at any stage of the system development cycle

and places a heavy burden on project management, including system recalls, even

after the delivery of the systems to the customer. The findings obtained as a result of

the research revealed that the management of technical debt is significant not only

for software developers but also for all system developers, stakeholders, and

manufacturers(Baccarini, 1996; ROBERT NORD, 2016; Rosser & Ouzzif, 2021a)

In addition, it has been demonstrated by the findings of the case studies we made and

the literature review; as systems become complex, the decision-making process is

affected by many factors (ROBERT NORD, 2016). The developers and managers

need to estimate the possible effects of decisions on the system's overall

performance. As a result of researching the deficiencies in the tools and methods, we

have developed and improved the technical debt visualization model and offered a

solution alternative for both the industry and the research (Avgeriou et al., 2021)

(Ernst et al., 2015; Zazworka et al., 2013) . The following sections describe the

research findings, implications, and recommendations.

7.1. Summary and results

The study was conducted through ten interviews with eight people. As a result, 25

technical debts were identified.

Table 38 and Figure 59 presents the effects of TDs among different stakeholders.

94

Figure 60 Td # of occurrence

Table 38 Td # of occurrence

Cost and Schedule are the most affected categories depending on the result of the

analysis of the Projects. Although not mentioned in the literature, it has been

revealed that the effects of technical debt on other departments and stakeholders are

too significant to be underestimated. One of the study's findings was that the

categories given are wider than Table 35 and open for improvements. Companies or

individuals may study the metaphor and find new categories depending on their

development environment and business domain.

Main effects of TD observed in each project, excluding the software category:

 Re-supplying the products that came with the change request,

 Reproduction of scraped products and supply of raw materials,

 Loss of bargaining advantage in product prices due to re-supply works,

0 5 10 15 20 25 30

Quality

Production

Cost

Hardware

Reputation

Schedule

Supply Chain

OF OCCURANCE

TD Effect: # of occurance:

Quality 17

Production 16

Cost 25

Hardware 18

Reputation 17

Schedule 23

Supply Chain 11

95

 The unplanned additional effort of all stakeholders, such as quality, hardware,

software, system, project, production, supply chain,

 Involving top management in the process,

 The customer loses confidence in the system,

 Negative impact on future sales due to declining customer reputation,

 The inability to apply standards in prototype and production processes and

configurations becomes unmanageable,

 The need for alternative design methods,

 The emergence of erroneous decisions that trigger each other,

 Having to make decisions that will reduce the total quality of the system after

irreversible steps,

 Shifting of the system delivery schedule,

 Inability to make resource plans for teams and infrastructures,

 Influencing the calendar and management plans of projects using the same

resources,

 The decreased motivation of the teams and damage to their faith in the work

done.

 Inefficient use of production lines

 As a result of TD decisions, new constraints and requirements may be added

to the system requirement specifications, which the standard system

development lifecycle would not include.

7.2. Technical debt categories for complex system development

The following technical debt categories were found by analyzing the data collected

from complex system development projects. These categories have been created

based on information and experience in the literature for software management and

system development methodologies.

Complexity Debt:

Complexity plays an essential role in the development cycle. In terms of

communication efficiency between development teams, complexity is vital.

Complexity debt arises from the difficulty of managing the impact of decisions taken

in the complex structure of the system. A single line of code change can have

unexpected effects on the entire system due to the interfaces and inter and outer

connections between couples of components. The complex system architecture

provides a structure that will help the emergence of technical debts If the phenomena

are not managed and tracked correctly.

Change Management Debt:

Change management; requires managing the change's effects, method, and necessity.

Employees who resist change need to be convinced, and the need for change needs to

be accepted by the stakeholders of the development activities. In order to implement

changes in complex system structures, all stakeholders need to be included in the

96

management process of the change requests. Possible impacts and unforeseen risks

can be reduced with the correct management of the change; otherwise, the

unpredictability of the results of the requests and the resistance against the change

triggers technical debt decisions.

Contract Debt:

Especially with the growth of structures and the increase of integrated systems,

contract clauses can be imposed on development teams by agreement. Some

specifications were deemed unnecessary during the production phase, which

assumed a need during the prototyping. Although these requirements do not

contribute to the system's performance, their development due to the contract

requires additional resources, affecting both calendar and budget plans. These

updates to resource planning decisions may cause decisions to lead to technical debt.

The client may force the development team with out-of-date requests, citing the

clauses in the contract due to the need for domain-specific knowledge.

Experience and Training Debt

All processes, from development to production, require individuals and institutions

to be trained and gain experience from the experts. This requirement continues even

after the delivery of the system to the customer. This type of debt is examined under

two categories. The first category is not transferring the current technological know-

how to the employees and not encouraging the developers to gain experience in the

field. This category also arises from needing to meet the requirements of resources

such as education and research for self-development. The second category arises

from the system's need for trained final users. These deficiencies may lead to the

search for solutions to problems that would not exist in the system, which can be

summarized as inaccurate planning of resources and inefficient performance of

designs.

Culture Debt

The culture of the located country and the company's way of doing business

influence the development activities of systems. Moreover, cultural influences arise

from traditional activities, which need to become standardized procedures. Failure to

embrace, manage and adapt to this understanding can create misunderstandings

between people and departments. Complex systems are affected by such

communication problems, and technical debts may arise due to a lack of

understanding of culture management.

Resource Debt:

The culture of the located country and the company's way of doing business

influence the development activities of systems. Moreover, cultural influences arise

from traditional activities, which need to become standardized procedures. Failure to

embrace, manage and adapt to this understanding can create misunderstandings

97

between people and departments. Complex systems are affected by such

communication problems, and technical debts may arise due to a lack of

understanding of culture management.

Mass Production Debt:

Complex systems project delivery schedules require development cycles to pass into

the production phase as soon as possible. However, the systems' production lifecycle,

which contradicts prototype development with the standards and methods to be

followed, requires following process management procedures while making these

decisions. Suppose the components moved to mass production and are faced with

significant change requests in the following phases of the project. In that case, the

project managers encounter decisions that may create technical debt because of the

schedule and cost constraints. In some cases, changes may even be impractical

because of the project budget requirements. Such scenarios require the creation of

workarounds for system performance with the existing product.

Management Debt:

Organizational structures directly affect the decisions taken by the project and

system teams. Sometimes subject matter experts and employees must act according

to senior management-dictated methods and decisions. These decisions depend on

the companies' profit and must be implemented even if they are incorrect for the

system's performance. Restriction of resources, dictation of design method, calendar

pressure, and faulty planning can be examples of the above issues. Choosing an

iterative development cycle in a company where the communication between the

customer and the designers is not deemed appropriate may result in the faulty or

incomplete transmission of a significant amount of requirements. Management debt

is one of the most challenging and influential categories regarding technical debt.

Supply Chain Debt:

The supplier and subcontractor debt must be examined under the Supply Chain Debt

category. Complex systems consist of thousands of materials and products. Most of

these components are outsourced because of the company's resource planning

activities to increase profits. The supply of these products requires the management

of the selection of firms, and the issuance of contracts requires that all existing debt

categories be evaluated. This category is particularly critical as it had to consider the

factors of other debt categories when making these decisions. Suppliers or

subcontractors may unconsciously or consciously make decisions affecting many

stakeholders, from design teams to system architectures. Since the designers have yet

to learn the existence of these decisions at the integration stage, their effects can be

interpreted differently, leading to decisions for the occurrence of technical debts.

98

Motivation Debt:

Project team members' approach to their responsibilities and how they do business

while performing their job definitions may cause consequences that affect the system

architecture's health. Employees with low motivation may intentionally or

unintentionally cause problems to be hidden or postponed because they do not take

the movements to act proactively. Companies that ignore this problem or do not look

for a solution may face failures in their projects because of the effects of TDs.

Customer Debt:

The success of the project in complex structures depends on the management of the

sub-system and the redundancy of the interfaces that need to be communicated and

their relations with each other. The communication between the teams and

departments involved in the development of these units and with each other is as

effective as the system architecture and design decisions. When the sensitivity shown

in the interfaces is not shown in the management and monitoring of this interaction

and even in the detailed planning, it leads to the emergence of many problems that

will not be on the agenda and the solution alternatives of the errors and problems that

arise, resulting in technical debts.

Communication Debt:

The project's success in complex structures depends on managing the communication

network of sub-systems. These systems should be designed to interfere with each

other as little as possible. The fewer interfaces are easier to manage in every way. As

the need for communication increases, difficulties may arise between development

teams. The impact of these teams' communication on the development cycle plays as

much of a role as system design. If the teams do not communicate effectively, they

may make decisions that affect each other's development outputs, affecting the

system's behavior. A system under development waits to be updated based on

feedback from all relevant stakeholders. Technical debts are inevitable if the

communication network collapses or consists of teams that need to transmit valuable

information to each other.

Strategy Debt

System architectures are directly affected by development methods. Complex

projects require a strategic plan for project management activities, including the

method of development lifecycles. This plan's lack of a strategy program may result

in technical debts. Inaccurately determined strategies are also the origins of

significant project risks. During the system's development process, it acted around

the determined strategy. System development is continued depending on the strategic

plan. Predetermined or planned actions are followed when companies face problems

and risks. These plans affect development cycles with requirements to adhere to

methodologies such as agile or waterfall. When trying to implement strategies that

99

do not meet the project's needs, system engineers or designers may be forced to

follow methods that will result in technical debt.

Control and Monitor Debt:

Failure to monitor the defined processes or the findings that potentially pose a risk

may lead to problems that can be easily avoided. All stakeholders of the system

development cycle should adopt this control and monitor loop. The proactive

approach requires identifying, evaluating, and monitoring scenarios where problems

are likely to arise. Standards may fail to be a precaution against every issue

encountered in complex structures. Companies or individuals that do not adopt this

approach may face technical debt.

Manufacturability and Testability Debt:

Designs are completed when they are manufacturable. Manufacturability also

requires testability and verifiability. These steps can be skipped when designing the

prototype. Non-standard methods can be used. However, the customer product

requires the completion of all processes. If production methods or requirements for

infrastructure are forgotten at the design stage, temporary solutions and alternatives

are sought in the following phases. This development strategy may lead to

unpredictable results in complex systems architecture structures and may create

technical debts.

Prototype Debt

Prototype technical debt is not just about non-transferable decisions and methods

from development to production. Necessary details that are overlooked during the

development phase and the critical processes that need to be documented cause

prototype debt to occur. The findings obtained in the system's prototype or the

performance outputs that cannot be achieved with the production standards can

increase customer expectations. Management approaches to the process and scope of

the project may lead to technical debts. It is challenging to estimate the impact of

these decisions on the complex system's architecture. Designers may damage the

system architecture when trying to achieve results that are not possible with current

technology or production standards. Moreover, when the effects of the fault

development approaches start to appear, detection and resolution of the malfunctions

may take time and require resources for the cause and effect analysis in the project's

later phases, which may lead to the emergence of technical debts.

7.3. Future research and limitations of the study

The literature has not examined technical debt metaphors in detail except for

software management. Although the current analysis provides an idea, the technical

debt metaphor needs to be studied for stakeholders other than software developers in

detail and included in the literature. In addition, new technical debt categories may

emerge with the analysis of these cases. The results and findings must be evaluated

100

by conducting cases for different projects and companies. In particular, data from

companies serving different markets will help to reveal new findings.

The model still needs to be developed into a tool. Technical debt visualization model

could be manageable via a web interface or a third-party program that facilitates

technical debt management. This tool can be integrated into companies' systems or

manage the process independently.

101

CHAPTER 8

CONCLUSION

The research seeks to comprehend the impacts of technical debt in the evolution of

complex systems. The literature does not provide a standard method for the

visualization and the detection of the metaphor. The technical debt visualization

model of TD in complex system development has been developed. Using that model,

the study team provides specific links between actions and causes of impacts

associated with technical debts in the system. With the assistance of the developed

model, it aims to prove that despite the effects of technical debt were only studied for

software management in the literature, its effects on other stakeholders also have

essential effects on complex system development.

Eight case studies were conducted to answer the research questions. These studies

were analyzed using the technical debt visualization model. The scenarios studied

were selected from complex system development projects at different stages of their

development cycle. Field experts and system and project managers evaluated TDVM

outputs. The result was considered technical debt management vital in complex

system development. In addition, the model is regarded as a critical resource for

detecting, managing, and preventing technical debt.

Qualitative analysis was conducted on the Interview and observation data. The

findings of this study were used to answer how sufficient the technical debt

categories in the literature are for detecting technical debt in complex systems. It has

been revealed that the existing literature offers a basis for technical debt detection

but needs improvement and study.

Sixteen unique technical debt types were discovered in the complex system

development activities literature. These 16 new categories were used to answer the

third research question, revealing that the existing literature provides a foundation

but needs improvement. The details and examples of these technical debts and their

detailed explanations are given in Chapter 7. This study revealed that many technical

debts are still waiting to be discovered and added to the literature. Although the

current categories in the literature occur through studies about software management,

creating a framework for the other stakeholders of the system development projects

is very important. Categorizing, monitoring, and managing technical debts specific to

additional fields through this framework is significant for companies to succeed in

projects to prevent high costs or schedule delays due to TDs. In complex structures,

it becomes difficult to follow the history of the scenarios that led to problems and

create a cause-effect relationship for their management. TDVM successfully

102

transformed the picture into a simple, understandable form for detecting and

managing technical debt in this environment. In addition, the developed model offers

successful and promising results in detecting reasons leading to technical debts. The

final result shows that it is also successful at revealing the effects of TD on various

partners and stakeholders, according to the feedback received from the experts.

As a result of using TDVM to analyze cases, the research shared seven improvement

suggestions for companies and individuals who want to manage the technical debt

metaphor in complex systems development projects. The details of these

improvements are detailed in the following sections.

As a result, it has been revealed that technical debt management offers companies

significant advantages in many different areas, especially in calendars and budgets.

In addition, TDVM has proven itself as a promising model both in revealing the

factors that cause the emergence of technical debt and managing it throughout the

system development cycle.

Implications for industry

Recommendations for managing the TD process for the complex system

development activities were significant in objectifying the result into explicit

outputs. Implications for the industry can be summarized as follows:

 Decisions taken in complex systems can lead to many unexpected results.

With TDVM, the effects of these decisions will be more predictable.

 Thanks to TDVM, possible malfunctions that will cause problems in the

future can be prevented before they occur in the system.

 The model allows the evaluation of TD decisions' effects from the

perspective of many stakeholders. Monitoring the metaphor in that way more

clearly reveals the impact of the consequences of decisions on project plans

such as calendars and budgets.

Three questions that will promote the use of the model by individuals and companies

in the complex system development process are answered below so that the study

can quickly adapt to their operations.

Q-1: How will companies or individuals visualize their systems when there is not

enough data to display?

TDVM is used for more than just real-time monitoring. It can also be used to analyze

retrospective cases. In the development process, steps and standards that need to be

improved can be revealed using the model. The effects of the decisions and the

reasons behind the problems can be managed effectively with the implementation of

the TDVM. Identification of the decisions and examination of internal and external

factors affecting the system's overall performance can be managed by analyzing the

model's output.

103

There needs to be more data and problems to analyze to mean that the processes are

operated correctly and perfectly. On the contrary, it may mean that the existing

problems still need to be detected. The research team recommends that companies'

processes should have a certain level of maturity to integrate TDVM. For example,

the effectiveness of decision support systems and the guidance of standards and

methods in managerial and operational decisions are the basis for implementing the

model. Otherwise, the data used to create the model may need to be reviewed and

interpreted. It may misrepresent processes or cause project and system management

decisions to misdirect.

Q-2: Can the technical debt visualization model be applied to systems rather

than complex projects?

The only constraint to implementing the technical debt visualization model is not the

project's complexity. The effects of decisions in complex structures cannot be easily

predicted. However, complexity increases with the project size and the number of

system components' interfaces. Changes in the development method, lack of standard

methodologies, data that cannot be traced, and non-repeatable processes require real-

time and retrospective project decision mechanisms. The necessity of managing

technical debt arises independently of the project's complexity.

Complexity is only one factor that affects the need to manage technical debt.

Different areas of expertise and decision mechanisms involving teams create the

necessary environment for the emergence and management of technical debt. As

seen in the cases handled during the research process, technical debt can occur in

project life cycles regardless of the system's complex structure and the difficulty

level of the decisions made.

Q-3: What is the right level for the depth of the decision?

According to (Chugh et al., 2008), wrong decisions are costly and become even

costlier as they must be managed and monitored. Focusing on the exact question is

essential to make the right decisions. As the interfaces between the system

components increase, systems operations may be affected by the decisions raised.

Both case studies and literature have demonstrated throughout the study that a minor

decision has the potential to cause technical debt in such scenarios. For this reason,

different decision types have been created below to raise awareness among project

stakeholders when making decisions in complex structures. Depending on the type of

decision, technical debt can be managed more effectively with awareness of the case

or procedure to be followed, and risks that may arise can be prevented before they

occur. Even if the decision type does not provide a solution to the problem, with the

help of institutional memory, it can enable one to benefit from the experiences

gained in the past.

These decisions are discussed below under six headings. But the decision types are

not limited to the list; they can be improved and reviewed by the companies,

individuals, and the academy.

104

Predictable or Unpredictable

System stakeholders made many decisions during the system development cycle to

obtain project goals. Some of that decisions can be categorized as routine and

regular. The possible effects of those everyday decisions can be easily predicted.

Imagine a dye defect in the system's mechanical surface. A standard painting

operation will be enough for the solution to the problem. Possible outcomes can be

easily predicted.

On the other hand, complex systems usually require difficult decisions. Imagine that

the dye has radioactivity and heat-blocking properties. Using a standard product will

harm the system's performance. Decision-makers must consider the system's

functional and non-functional requirements, especially in an uncertain environment.

In addition, monitoring the decisions taken on the design and operating the approval

process facilitates the management of possible effects.

Make or Buy

Resource allocation and management have a significant role in developing and

producing complex systems. Companies must outsource parts, modules, and sub-

systems to achieve project schedules and budget goals. A partial outsourcing option

is also combined with using companies' developers and resources. Making or buying

decisions requires budget and resource management. But still, subcontract and

supplier management is challenging when companies prefer to outsource critical

modules or parts of the system.

Especially mass production with sub-contractor may even need to plan their capacity

and output to achieve systems goals. Also, choosing a company that doesn’t have

enough technological background or knowledge may even fail to meet the critical

requirement of the system. That decision type is vital in TD management in complex

system development.

Phase Transition

Phase transitions are discussed under two headings in the thesis. The first type is the

decision of the product development method to use prototype or mass production of

the systems; the second is expressed for transitions between different stages in the

product development cycle. These development cycles can be categorized as;

requirement, design, verification and validation, implementation, integration, and

maintenance.

Many companies must follow standards or procedures in the prototype development

environment and plan their resources for collecting detailed configuration data. The

project team aims to have the working product as soon as possible. However,

complex systems often require time and budget constraints to develop prototypes.

This causes the development and production cycles to become intertwined. These

transitions are critical in technical debt management. Decisions should be carefully

105

examined, and their effects on the product and system should be closely monitored

and predicted. Assume that a subcomponent is tested with non-standard applications

or procedures while developing the prototype. The expected result will not be

obtained when trying to transfer prototype methods, which need to be validated or

even accepted by the industry standards for mass production.

Program – Portfolio (Strategic)

Completion of complex projects is critical for companies' goals. For this reason, they

are frequently monitored by the top management and the project stakeholders. If the

system and project teams fail to develop or produce these systems, companies face

many negative consequences regarding their business conduct. This is why

companies transfer their resources to complex projects, and upper management is

involved in the decision process. Upper management support for the decision process

only sometimes makes things easier.

Management may dictate decisions that do not conform to the design and system

architecture. Such decisions leave adverse traces and effects on the life cycle of

projects. In addition to system needs, companies have goals arising from their vision

and mission. These strategic plans may create additional requirements for projects.

Top management can prioritize these requirements. These prioritizations may result

in not allocating resources for critical improvements or negatively impacting the

system architecture. System and project managers should carefully manage these

requirements and their effects and results.

Behavioural

No matter how much hardware and software the systems contain, the decisions

require human interaction. Although the developing technology offers many tools

and auxiliary tools that serve the decision mechanisms, the human factor maintains

its importance. Companies with specific standards and control mechanisms may be

less affected by behavioural decisions. Because possible behavioural decisions are

controlled and monitored with standards and procedures, the possible risk is

distributed to different stakeholders to be managed effectively.

However, managing all decisions actively in mass production takes time and effort.

Since the decision mechanism is not easily manageable, judgments are often made

instantly and do not go through control. For example, as stated in one of the case

studies in the research, details that needed to be documented caused the project to

fail in the later stages. The fact that the standard did not guide the designer in

document preparation and that he needed to detail the document to evaluate his

design created significant problems for the system.

Situational

Due to budget and calendar pressure, companies faced difficult decisions during the

development phases of complex system development. Managers or decision-makers

106

should make unpredictable, non-repetitive decisions. These types of decisions are

non-standard routines and must be followed. Results are not easily predictable and

have yet to be previously validated. It can also create unexpected situations when

interacting with other system components and modules.

Assume a critical component(A) design has changed due to an unavailable raw

material. The system needs three A to continue its operation without losing its

efficiency. Due to the unavailable raw material, two different designs were made

(Component A - Component B). These two designs form-fit to each other. This

situation requires the operation of the system with two different configurations. For

example, the new system configuration has to operate with two products, A, and 1

product, B. Due to schedule and budget pressure, product B needed help to complete

validation tests. Just because, in the project plan, these tests were only planned for

product A rather than product B. However, since its effects and results require an

extended analysis and modelling, the problems that may be faced in the future

become critical risks for the system. As in this scenario, the decisions taken in the

project because of the instant developments and changes can be evaluated under this

heading.

Six recommendations to improve the management activities of TD in complex

system development are shared below.

1. Production processes must be managed separately from the prototype

development as much as possible.

Mass production decisions before the completion of the system development cycle

have complicated consequences. When a change request is necessary for the mass

production cycle, it creates an unplanned workload, cost, and calendar disadvantage

for the project management. Depending on the progress in the production, change

requests may even be inapplicable to the systems. The effects even result in system

modules being scrapped and remanufactured. Technical debt management is

complicated when transitioning from prototype development to mass production.

Especially when there is feedback between the two processes, project management

gets involved. Also, environmental factors cannot be detected in that scenarios,

making the system development extremely difficult to manage.

2. Additional technical debt probabilities must be considered when

making decisions and managing risks when technical debt is detected.

Technical debts put extra constraints on the systems' development or production

cycle. As management activities of technical debts are postponed, these factors can

become the main factors in decision-making in system management. For this reason,

technical debt should be monitored and evaluated, and solution decisions should be

made without delay. Awareness should be raised of technical debts, and risks should

be monitored and assessed regularly. Technical debts can cause other technical debts

to arise. Especially in complex structures, additional variables bring difficult

decisions to manage. A single line of code can change the main components in the

107

system. This situation may cause new interfaces to be built, test infrastructures to be

updated, and integration routes to be updated. Technical debts can also affect other

projects' calendars and resource management, especially in projects which require

the same resources. Alternative solutions are created when these changes cannot be

made due to calendar pressure or project budget. These alternatives lead to the

emergence of new technical debts. Parallel to the system's complexity, the

development structure becomes more complicated to manage when making

decisions.

3. Technical debts should be managed from the perspective of all

stakeholders, not just software developers.

Technical debt has severe effects on other stakeholders of the project, not just the

software developers. These stakeholders take an active role in the emergence of

technical debts that affect the system development process. The findings of the study

show that quality, production, supply chain, and hardware development teams are

examples of the stakeholders of TD management. This list is not limited to the given

proficiencies.

4. Subcontractor/supplier selection and management for critical

products are essential in complex system management.

Especially in mass production, outsourcing is preferred for efficient resource

planning. From documentation to manufacturability, transferring product-specific

domain experience to outsourcing companies plays a vital role in TD management.

Actions taken by these companies to reduce costs in mass production to increase

their profit create risks that can lead to TD. Ultimately well-intentioned methods or

critical information that may affect the system's performance may be kept from the

contractor due to a lack of knowledge and field-specific experience. This information

is necessary for system administrators to search for the solution in the system's

relevant parts; otherwise, it will cause a delay in the schedule or a major malfunction

at the system level after the integration with the system.

5. New technologies and innovation in system development often come

with technical debts that require efficient management of the metaphor.

First, since the system structure is enormous and the cost is high, the system's

prototype may become the final product in such complex systems. These prototypes

may be the critical parts of the system or the system itself. Companies are forced to

take that unplanned action because, after many iterations building the system again

may not become the most efficient option. While trying to meet demanding

requirements, non-standard applications can be made, which may not be kept under

configuration. Also, prototype development with designer interventions instead of

production standards creates a chaotic environment for the management of TD.

Technical debt management becomes challenging with non-standard methods and

untraceable, unrepeatable work processes and documentation. Companies have to

108

separate their customer products from prototype development, or they should have a

plan for its management in scenarios where it is mandatory.

6. Technical debt management continues after system delivery. It needs to be

followed and monitored.

Complex systems involve sub-systems and modules. Integration of different parts

and an increased number of interfaces makes it harder to specify the reasons behind

troubles. The effects of technical debt may even occur after the delivery of the

systems that require the monitoring of TD throughout the system lifecycle.

Especially unintentional TDs are critical since they usually hide in the design and

cannot be discovered before their effects occur. After the transportation of the

system, any rework or change request related to the solution of TD requires customer

management. The probability of reputation loss creates new constraints for the

project team. Developers are forced to try to find alternatives that can be applied

without recalling the system from the customer.

7. Standardizing the transition from prototype development to mass

production and creating a team that manages this process facilitates TD

management.

The development environment usually does not require production standards.

Companies do not follow procedures or methods during the development lifecycle.

During prototyping, critical information for the systems may lose. The system design

also depends on the operating conditions. These conditions may change assembly

methods or architectural plans. Specific requirements and qualified personnel with

domain experience must conduct the systems' integration process. It is essential to

prevent the loss of information in this process and to ensure that the necessary

methods and tools are used to avoid the system from being exposed to TDs. Creating

a department and a team that manages and monitors the transition process from

prototype to mass production is vital for managing complex systems at different

stages and levels.

Implications for research

The concept of technical debt still deserves detailed study in the literature from a

complex system development perspective. Conducting research from the perspective

of all stakeholders affected by metaphor will allow more profitable and efficient

management of the complex system development process. Moreover, managing

technical debt in the system development cycle will be one of the guiding factors for

companies to succeed. The following two articles present the study's implications for

future research:

 Findings of the multiple case studies with TDVM suggest that TD

management has a significant role in system and hardware development. This

109

concept needs to be studied in more detail in the literature, and our research

provides a basis.

 Technical debt has significant effects on stakeholders other than software

developers. This result suggests that technical debt effects should be

evaluated for software developers and all project stakeholders.

110

111

REFERENCES

Akbarinasaji, S., Bener, A. B., & Erdem, A. (2016). Measuring the principal of

defect debt. Proceedings - 5th International Workshop on Realizing Artificial

Intelligence Synergies in Software Engineering, RAISE 2016, 1–7.

https://doi.org/10.1145/2896995.2896999

Alves, N. S. R., Mendes, T. S., de Mendonça, M. G., Spinola, R. O., Shull, F., &

Seaman, C. (2016). Identification and management of technical debt: A

systematic mapping study. Information and Software Technology, 70, 100–121.

https://doi.org/10.1016/j.infsof.2015.10.008

Austin Page, by M., Eppinger, S. D., & THN iSsign Joan Rubin OFTECHNLOGY--

UJ, O. O. (2019). Technical Debt: The Cost of Doing Nothing Signature

redacted Signature redacted Signature redacted Signature redacted.

Avgeriou, P. C., Taibi, D., Ampatzoglou, A., Arcelli Fontana, F., Besker, T.,

Chatzigeorgiou, A., Lenarduzzi, V., Martini, A., Moschou, A., Pigazzini, I.,

Saarimaki, N., Sas, D. D., de Toledo, S. S., & Tsintzira, A. A. (2021). An

Overview and Comparison of Technical Debt Measurement Tools. IEEE

Software, 38(3), 61–71. https://doi.org/10.1109/MS.2020.3024958

Baccarini, D. (1996). The concept of project complexity - A review. International

Journal of Project Management, 14(4), 201–204. https://doi.org/10.1016/0263-

7863(95)00093-3

Baškarada, S. (2014). Qualitative Case Study Guidelines. The Qualitative Report.

https://doi.org/10.46743/2160-3715/2014.1008

Becker, J., Knackstedt, R., & Pöppelbuß, J. (2009). Developing Maturity Models for

IT Management. Business & Information Systems Engineering, 1(3), 213–222.

https://doi.org/10.1007/s12599-009-0044-5

Carnegie Mellon University. (2016). Managing Technical Debt in Complex Software

Systems.

Christian B. Almazan University of Maryland, C. P. (n.d.). A Comparison of Bug

Finding Tools for Java.

Chugh, D., Bazerman, M. H., & Milkman, K. L. (2008). How Can Decision Making

Be Improved?

Daughtry III, J. M., & Kannampallil, T. G. (2005). Refactoring to Patterns. The

Journal of Object Technology, 4(4), 193. https://doi.org/10.5381/jot.2005.4.4.r2

112

Defense Science Board. (2018). February 2018 CLEARED FOR OPEN

PUBLICATION DEPARTMENT OF DEFENSE OFFICE OF

PREPUBLICATION AND SECURITY REVIEW. 2018.

Ernst, N. A., Bellomo, S., Ozkaya, I., Nord, R. L., & Gorton, I. (2015). Measure it?

Manage it? Ignore it? Software practitioners and technical debt. 2015 10th Joint

Meeting of the European Software Engineering Conference and the ACM

SIGSOFT Symposium on the Foundations of Software Engineering, ESEC/FSE

2015 - Proceedings. https://doi.org/10.1145/2786805.2786848

Fernández-Sánchez, C., Garbajosa, J., Yagüe, A., & Perez, J. (2017). Identification

and analysis of the elements required to manage technical debt by means of a

systematic mapping study. Journal of Systems and Software, 124, 22–38.

https://doi.org/10.1016/j.jss.2016.10.018

Guo, Y., Spínola, R. O., & Seaman, C. (2016). Exploring the costs of technical debt

management – a case study. Empirical Software Engineering, 21(1), 159–182.

https://doi.org/10.1007/s10664-014-9351-7

Gustafsson, J., & Gustafsson, J. (n.d.). Single case studies vs. multiple case studies:

A comparative study.

Harvard Business School. (2015). Does IT Matter? An HBR Debate - HBS Working

Knowledge - Harvard Business School. https://hbswk.hbs.edu/archive/does-it-

matter-an-hbr-debate

Henderson, J. C., & Venkatraman, N. (1993). Strategic alignment: Leveraging

information technology for transforming organizations. In REPRINTED FROM

IBM SYSTEMS JOURNAL (Vol. 32, Issue 1).

IPEK OZKAYA. (2019). Managing the Consequences of Technical Debt: 5 Stories

from the Field. https://insights.sei.cmu.edu/blog/managing-the-consequences-

of-technical-debt-5-stories-from-the-field/

 Issue-Based Observation Form for Case Studies in Science Education. (n.d.).

Karlsson, M. (n.d.). What Is a Case Study?

Lenarduzzi, V., Besker, T., Taibi, D., Martini, A., & Arcelli Fontana, F. (2021). A

systematic literature review on Technical Debt prioritization: Strategies,

processes, factors, and tools. Journal of Systems and Software, 171.

https://doi.org/10.1016/j.jss.2020.110827

Lenarduzzi, V., & Fucci, D. (2019). Towards an Holistic Definition of Requirements

Debt. http://arxiv.org/abs/1907.10887

Li, Z., Avgeriou, P., & Liang, P. (2015a). A systematic mapping study on technical

debt and its management. Journal of Systems and Software, 101, 193–220.

https://doi.org/10.1016/j.jss.2014.12.027

113

Li, Z., Avgeriou, P., & Liang, P. (2015b). A systematic mapping study on technical

debt and its management. Journal of Systems and Software, 101, 193–220.

https://doi.org/10.1016/j.jss.2014.12.027

MacCormack, A., & Sturtevant, D. J. (2016). Technical debt and system architecture:

The impact of coupling on defect-related activity. Journal of Systems and

Software, 120, 170–182. https://doi.org/10.1016/j.jss.2016.06.007

Martin Fowler. (n.d.). TechnicalDebtQuadrant. Retrieved January 11, 2023, from

https://www.martinfowler.com/bliki/TechnicalDebtQuadrant.html

Martini, A., Bosch, J., & Chaudron, M. (2014). Architecture technical debt:

Understanding causes and a qualitative model. Proceedings - 40th Euromicro

Conference Series on Software Engineering and Advanced Applications, SEAA

2014, 85–92. https://doi.org/10.1109/SEAA.2014.65

Nicolli, R. (2020). Hearing the Voice of Software Practitioners on Causes, Effects,

and Practices to Deal with Documentation Debt. Nicolli Rios.

O’REILLY. (2022). Managing Software Debt: Building for Inevitable Change by.

Özcan-Top, Ö., & Demirors, O. (2019). Application of a software agility assessment

model – AgilityMod in the field. Computer Standards and Interfaces, 62, 1–16.

https://doi.org/10.1016/j.csi.2018.07.002

Ramac, R., Mandic, V., Tausan, N., Rios, N., de Mendonca Neto, M. G., Seaman, C.,

& Spinola, R. O. (2020). Common Causes and Effects of Technical Debt in

Serbian IT: InsighTD Survey Replication. Proceedings - 46th Euromicro

Conference on Software Engineering and Advanced Applications, SEAA 2020,

354–361. https://doi.org/10.1109/SEAA51224.2020.00065

Ramač, R., Mandić, V., Taušan, N., Rios, N., Freire, S., Pérez, B., Castellanos, C.,

Correal, D., Pacheco, A., Lopez, G., Izurieta, C., Seaman, C., & Spinola, R.

(2022a). Prevalence, common causes and effects of technical debt: Results from

a family of surveys with the IT industry. Journal of Systems and Software, 184.

https://doi.org/10.1016/j.jss.2021.111114

Ramač, R., Mandić, V., Taušan, N., Rios, N., Freire, S., Pérez, B., Castellanos, C.,

Correal, D., Pacheco, A., Lopez, G., Izurieta, C., Seaman, C., & Spinola, R.

(2022b). Prevalence, common causes and effects of technical debt: Results from

a family of surveys with the IT industry. Journal of Systems and Software, 184.

https://doi.org/10.1016/j.jss.2021.111114

Rios, N., Spinola, R. O., de Mendonça Neto, M. G., & Seaman, C. (2019).

Supporting analysis of technical debt causes and effects with cross-company

probabilistic cause-effect diagrams. Proceedings - 2019 IEEE/ACM

114

International Conference on Technical Debt, TechDebt 2019, 3–12.

https://doi.org/10.1109/TechDebt.2019.00009

Rios, N., Spínola, R. O., Mendonça, M., & Seaman, C. (2018, October 11). The most

common causes and effects of technical debt: First results from a global family

of industrial surveys. International Symposium on Empirical Software

Engineering and Measurement. https://doi.org/10.1145/3239235.3268917

Rios, N., Spínola, R. O., Mendonça, M., & Seaman, C. (2020). The practitioners’

point of view on the concept of technical debt and its causes and consequences:

a design for a global family of industrial surveys and its first results from Brazil.

Empirical Software Engineering, 25(5), 3216–3287.

https://doi.org/10.1007/s10664-020-09832-9

ROBERT NORD. (2016). The Future of Managing Technical Debt.

https://insights.sei.cmu.edu/blog/the-future-of-managing-technical-debt/

Rosser, L. A., & Norton, J. H. (2021). A Systems Perspective on Technical Debt.

IEEE Aerospace Conference Proceedings, 2021-March.

https://doi.org/10.1109/AERO50100.2021.9438359

Rosser, L. A., & Ouzzif, Z. (2021a). Technical Debt in Hardware Systems and

Elements. IEEE Aerospace Conference Proceedings, 2021-March.

https://doi.org/10.1109/AERO50100.2021.9438332

Rosser, L. A., & Ouzzif, Z. (2021b). Technical Debt in Hardware Systems and

Elements. IEEE Aerospace Conference Proceedings, 2021-March.

https://doi.org/10.1109/AERO50100.2021.9438332

Shedd, C. (2015). How to Effectively Address the Usability Debt Within Your

Product | by Catriona Shedd | DesignIQ | Medium. https://medium.com/iq-

design/how-to-effectively-address-the-usability-debt-within-your-product-

6b8693e6e853

Stephany Bellomo. (n.d.). Got Technical Debt? Track Technical Debt to Improve

Your Development Practices. Retrieved July 3, 2022, from

https://insights.sei.cmu.edu/blog/got-technical-debt-track-technical-debt-to-

improve-your-development-practices/

Tomas, P., Escalona, M. J., & Mejias, M. (2013). Open source tools for measuring

the Internal Quality of Java software products. A survey. In Computer

Standards and Interfaces (Vol. 36, Issue 1, pp. 244–255).

https://doi.org/10.1016/j.csi.2013.08.006

Vassallo, C., Panichella, S., Palomba, F., Proksch, S., Gall, H. C., & Zaidman, A.

(2020). How developers engage with static analysis tools in different contexts.

Empirical Software Engineering, 25(2), 1419–1457.

https://doi.org/10.1007/s10664-019-09750-5

115

Verdecchia, R. (n.d.). Architectural Technical Debt: Identification and Management.

https://doi.org/10.13140/RG.2.2.11963.95525

Verdecchia, R., Kruchten, P., & Lago, P. (n.d.). Architectural Technical Debt: A

Grounded Theory.

vom Brocke, J., Hevner, A., & Maedche, A. (2020). Introduction to Design Science

Research (pp. 1–13). https://doi.org/10.1007/978-3-030-46781-4_1

Zampetti, F., Scalabrino, S., Oliveto, R., Canfora, G., & di Penta, M. (2017). How

Open Source Projects Use Static Code Analysis Tools in Continuous Integration

Pipelines. IEEE International Working Conference on Mining Software

Repositories, 334–344. https://doi.org/10.1109/MSR.2017.2

Zazworka, N., Spínola, R. O., Vetro, A., Shull, F., & Seaman, C. (2013). A case

study on effectively identifying technical debt. ACM International Conference

Proceeding Series. https://doi.org/10.1145/2460999.2461005

116

117

APPENDIX

Appendix A: List of interview questions based on different roles

118

Appendix B: IPMA project complexity participant -1-

Criteria: Very Low (1) Low (2) High (3) Very High (4)

Defined, obvious Uncertain, vague

Few conflicts Many conflicts

Quite transparent Hidden

Quite independent Very interdependent

Low, monodimensional Large, multidimensional

Requirements perfectly clear Requirements unclear

Easily achievable Unlikely to be achieved

Defined, obvious Uncertain, vague

Available, known Uncertain, changing

Complexity Rank 3

Few parties Numerous parties

Few uniform categories Many different

Few and well known relations Unknown relations

Comparable interest Divergent interests

User available and committed to the project User uncommitted with the project

Executive management committed to the project Executive management uncommitted to the project

Sponsor committed with project methadology Sponsor uncommitted with project methadology

Complexity Rank 3

Few structures Numerous structures

Simple, straightforward Demanding, elaborate

Sequential Overlapping, simultaneous

Uni-dimensional, common Multi-dimensional, comprehensive

Complexity Rank 3

Technological competence in all of the project chain links Technological Incompetence in any of the project chain links

Well known technologies used Too many new technologies in place

Full IT management support No IT management support

Stakeholders technology literacy Stakeholders technology illiteracy

Few Many

Complexity Rank 2

Few, small control span Many, large control span

Static team structure Dynamic team structure

Constant and uniform Adaptive and variable

Few important decisions Many important decisions

Highly motivated Little motivation

Focused team Dispersed team

Domestic teams Offshore teams / Near shore teams involved

Business aspects of project Good know how in offshore / near shore teams Teams unfamiliar with business / Technical aspects of the project

Complexity Rank 3

Known and proven technology Unknown technology

Repetitive approach Innovative approach

Limited Large

Public interest low Large public interest

Complexity Rank 1

Few Many

Direct, not demanding, uniform Indirect, demanding, manifold

Uni-dimensional, simple Multidimensional, matrix structure

Few relations Intensive, mutual relations

Complexity Rank 4

Homogenous Diverse

Uniform, well known Multicultural, unknown

Close, concentrated Distant, distributed

Small, easy to handle Large, demanding

Complexity Rank 4

High, quite certain Low, uncertain

Low risk potential, low impact High risk potential, high impact

Many options for actions Limited options for actions

Low potential of opportunities Large potential of opportunities

Complexity Rank 2

Available, known Uncertain, changing

One investor and few kind of resources Many investors and kinds of resources

Low(relative to project of the same kind) Large(relative to project of the same kind)

Low High

Complexity Rank 4

Few, simple Numerous, manifold

Common standarts applicable Few common standarts applicable

Much support available No support available

Low percentage High percentage

Totally incremental methadology used Totally iterative methadology used

Complexity Rank 2

IPMA - Measuring the Project Management Complexity: The Case of Information Technology Projects

Total Complexity Level (the complexity of the project against 62.5% of the

minimum

index in which a project is considered complex)
0,723559908

11. PM Methods,

Tools and

Techniques

Variety of methods and tools applied

Application of standarts

Availability of standarts

Incremental or iterative methodology used

0,75

Propotions of PM to total project work

10. Resources

Including Finance

Availability of people, material, etc.

Financial resources

Capital investment

Quantity and diversity of staff

0,6875

0,5

8. Cultural and

Social Context

Diversity of context

Cultural variety

Geographic distances

Social span

0,5625

9. Risk and

Opportunities

Predictability of risks and opportunities

Risk probability, significance of impacts

Potential of opportunities

Options for action to minimise risks

7. Project

Organisation

Number of interfaces

Demand for communication

Hierarchical structure

Relations with permanent organisations

0,8125

0,8125

6. Degree of

Innovation,

General Conditions

Technological degree of innovation

Demand of creativity

Scope for development

Significance on publica agenda

0,75

5. Leadership,

Teamwork,

Decisions

Number of sub-ordinates

Team structure

Leadership style

Decision-making processes

Team motivated by the project

Hard-Working, Focussed Staff

Near shore / offshore teams involved

1

4. Technology

Incompetence on using/applying technology

New technologies

IT management support

Technology illiteracy

0,8

Infrastructure, telecommunication constraints

3. Project

Structure, Demand

For Coordination

Structures to be coordinated

Demand of coordination

Structuring of phases

Demand for reporting

0,583333333

2. Interested

Parties,

Integration

Interested parties, lobbies

Categories of stakeholders

Stakeholder interrelations

Interests of involved parties

User involvement

Executive management support

Project sponsor supports project methodology

0,714285714

Clear strategic objectives(organizational)

Uncertain and changing regulatory requirements

1. Objectives,

Requirements and

Expectations

Transparency of mandate and objectives

Interdependence of objectives

Number and assesment of results

Description of the criteria:

Mandate and objective

Conflicting objectives

Clear statement of requirements

Realistic expectations

119

Appendix C: IPMA project complexity participant -2-

Criteria: Very Low (1) Low (2) High (3) Very High (4)

Defined, obvious Uncertain, vague

Few conflicts Many conflicts

Quite transparent Hidden

Quite independent Very interdependent

Low, monodimensional Large, multidimensional

Requirements perfectly clear Requirements unclear

Easily achievable Unlikely to be achieved

Defined, obvious Uncertain, vague

Available, known Uncertain, changing

Complexity Rank 3

Few parties Numerous parties

Few uniform categories Many different

Few and well known relations Unknown relations

Comparable interest Divergent interests

User available and committed to the project User uncommitted with the project

Executive management committed to the project Executive management uncommitted to the project

Sponsor committed with project methadology Sponsor uncommitted with project methadology

Complexity Rank 3

Few structures Numerous structures

Simple, straightforward Demanding, elaborate

Sequential Overlapping, simultaneous

Uni-dimensional, common Multi-dimensional, comprehensive

Complexity Rank 3

Technological competence in all of the project chain links Technological Incompetence in any of the project chain links

Well known technologies used Too many new technologies in place

Full IT management support No IT management support

Stakeholders technology literacy Stakeholders technology illiteracy

Few Many

Complexity Rank 2

Few, small control span Many, large control span

Static team structure Dynamic team structure

Constant and uniform Adaptive and variable

Few important decisions Many important decisions

Highly motivated Little motivation

Focused team Dispersed team

Domestic teams Offshore teams / Near shore teams involved

Business aspects of project Good know how in offshore / near shore teams Teams unfamiliar with business / Technical aspects of the project

Complexity Rank 3

Known and proven technology Unknown technology

Repetitive approach Innovative approach

Limited Large

Public interest low Large public interest

Complexity Rank 1

Few Many

Direct, not demanding, uniform Indirect, demanding, manifold

Uni-dimensional, simple Multidimensional, matrix structure

Few relations Intensive, mutual relations

Complexity Rank 4

Homogenous Diverse

Uniform, well known Multicultural, unknown

Close, concentrated Distant, distributed

Small, easy to handle Large, demanding

Complexity Rank 4

High, quite certain Low, uncertain

Low risk potential, low impact High risk potential, high impact

Many options for actions Limited options for actions

Low potential of opportunities Large potential of opportunities

Complexity Rank 2

Available, known Uncertain, changing

One investor and few kind of resources Many investors and kinds of resources

Low(relative to project of the same kind) Large(relative to project of the same kind)

Low High

Complexity Rank 4

Few, simple Numerous, manifold

Common standarts applicable Few common standarts applicable

Much support available No support available

Low percentage High percentage

Totally incremental methadology used Totally iterative methadology used

Complexity Rank 2

Complexity

Description of the criteria:

Mandate and objective

Conflicting objectives

Clear statement of requirements

Realistic expectations

Clear strategic objectives(organizational)

Uncertain and changing regulatory requirements

1. Objectives,

Requirements and

Expectations

Transparency of mandate and objectives

Interdependence of objectives

Number and assesment of results

0,611111111

2. Interested

Parties,

Integration

Interested parties, lobbies

Categories of stakeholders

Stakeholder interrelations

Interests of involved parties

User involvement

Executive management support

Project sponsor supports project methodology

0,821428571

1

4. Technology

Incompetence on using/applying technology

New technologies

IT management support

Technology illiteracy

0,75

Infrastructure, telecommunication constraints

3. Project

Structure, Demand

For Coordination

Structures to be coordinated

Demand of coordination

Structuring of phases

Demand for reporting

1

0,8125

6. Degree of

Innovation,

General Conditions

Technological degree of innovation

Demand of creativity

Scope for development

Significance on publica agenda

0,6875

5. Leadership,

Teamwork,

Decisions

Number of sub-ordinates

Team structure

Leadership style

Decision-making processes

Team motivated by the project

Hard-Working, Focussed Staff

Near shore / offshore teams involved

7. Project

Organisation

Number of interfaces

Demand for communication

Hierarchical structure

Relations with permanent organisations

Capital investment

Quantity and diversity of staff

0,6875

0,6875

8. Cultural and

Social Context

Diversity of context

Cultural variety

Geographic distances

Social span

0,5625

9. Risk and

Opportunities

Predictability of risks and opportunities

Risk probability, significance of impacts

Potential of opportunities

Options for action to minimise risks

IPMA - Measuring the Project Management Complexity: The Case of Information Technology Projects

Total Complexity Level (the complexity of the project against 62.5% of the

minimum

index in which a project is considered complex)
0,774116743

11. PM Methods,

Tools and

Techniques

Variety of methods and tools applied

Application of standarts

Availability of standarts

Incremental or iterative methodology used

0,85

Propotions of PM to total project work

10. Resources

Including Finance

Availability of people, material, etc.

Financial resources

120

Appendix D: Observation Form

Research Name: Analysis of the Impact of Technical Debt in Complex Systems

Development

General Objective: To analyze employees' daily routines from different levels to

understand their effects on technical debt management.

#:

Criterion: Y: N: Observation:

1.

Did all relevant team members

contribute to making critical

decisions?

2.

Was time pressure the most

effective factor in making

technical debt decisions?

3.

When making the decision, have its

effects on production, quality and

overall project schedule been

evaluated? If it was evaluated, was

there a certain method followed?

4.

Is the rate of exposure to different

subsystems due to changes made in

connected subsystems high?

5.
In these scenarios was the technical

debt cost measured?

6.

Is the impact ratio of hardware and

software on technical debt the

same?

7.

When making a redesign, refactor

or implementation decision; did the

managers take into account the

maintenance and sustainability

aspects of the system?

121

Appendix E: TDVM model development strategy

